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ABSTRACT
Database research can help machine learning performance in many
ways. One way is to design better data structures. This paper com-
bines the use of incremental computation and sequential and proba-
bilistic filtering to enable "forgetful" tree-based learning algorithms
to cope with concept drift data (i.e., data whose function from input
to classification changes over time).

The forgetful algorithms described in this paper achieve high
time performance while maintaining high quality predictions on
streaming data. Specifically, the algorithms are up to 24 times faster
than state-of-the-art incremental algorithms with at most a 2% loss
of accuracy, or at least twice faster without any loss of accuracy.
This makes such structures suitable for high volume streaming
applications.
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1 INTRODUCTION

Supervised machine learning[3] tasks start with a set of labeled
data. Researchers partition that data into training data and test
data. They train their favorite algorithms on the training data and
then derive accuracy results on the test data. The hope is that these
results will hold on to yet-to-be-seen data because the mapping
between input data and output label (for classification tasks) doesn’t
change.

This paradigm works well for applications such as medical re-
search. In such settings, if a given set of lab results 𝐿 indicate a
certain diagnosis 𝑑 at time 𝑡 , then that same set of input measure-
ments 𝐿 will suggest diagnosis 𝑑 at a new time 𝑡 ′.

However, there are many applications where the function be-
tween input and output label changes: inflation rates, variants of
epidemics, and market forecasting. In such applications, the map-
ping from input to labeled output changes over time. This requires
more work, but also presents a time performance opportunity be-
cause a learning system can judiciously "forget" (i.e. discard) old
data and learn a new input-output function on only the relevant
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data and do so quickly. In addition to discarding data cleverly, such
a system can take advantage of the properties of the data structures
to speed up their maintenance.

These intuitions form the basic strategy of the forgetful data
structures we describe here.

2 BACKGROUND

The training process of many machine learning models take a set
of training samples of the form (𝑥1, 𝑦1), (𝑥2, 𝑦2), ..., (𝑥𝑁 , 𝑦𝑁 ) where
in each training sample (𝑥𝑖 , 𝑦𝑖 ) ∈ (𝑋𝑡𝑟𝑎𝑖𝑛,𝑌𝑡𝑟𝑎𝑖𝑛), 𝑥𝑖 is a vector
of feature-values and 𝑦𝑖 is a class label[12, 19]. The goal is to learn
a function from the 𝑋 values to the 𝑦 values. In the case when the
mapping between 𝑋 and 𝑦 can change, an incremental algorithm
will update the mapping as data arrives. Specifically, after receiv-
ing the k-th batch of training data, the parameters of the model
𝑓 changes to reflect that batch. At the end of the n-th training
batch, the model 𝑓𝑛 can give a prediction of the following data
point such that ˆ𝑦𝑛+1 = 𝑓𝑛 (𝑥𝑛+1). This method of continuously up-
dating the model on top of the previous model is called incremental
learning.[18] [4]

Conventional decision tree methods, like CART [13], are not
incremental. Instead, they learn a tree from an initial set of training
data. Under the assumption that data is independent and identically
distributed (i.i.d.), conventional decision tree methods form the tree
once and for all. A naive incremental approach (needed when the
data is not i.i.d.) would be to rebuild the tree from scratch periodi-
cally. But rebuilding the decision tree can be expensive. Alternative
methods such as VFDT[21] or iSOUP-Tree [16] incrementally up-
date the decision tree with the primary goal of reducing memory
consumption.

2.1 Hoeffding Tree
In the Hoeffding Tree (or VFDT)[5], each node considers only a
fixed subset of the training set, designated by a parameter 𝑛, and
uses that data to choose the splitting attribute and value of that node.
In this way, once a node has been fitted on 𝑛 data points, it won’t be
updated anymore. The number of data points 𝑛 considered by each
node is calculated using the Hoeffding bound [8], 𝑛 =

𝑅2𝑙𝑛 (1/𝛿)
2𝜖2 ,

where 𝑅 is the range of the variable, 𝛿 is the confidence fraction
which is set by user, and 𝜖 = 𝐺 (𝑥1) −𝐺 (𝑥2) is the distance between
the best splitter 𝑥1 and the second best splitter 𝑥2 based on the 𝐺
function. For example, after a node has received 𝑛 training data
points, we might have𝐺 (𝑥1) = 0.2 and𝐺 (𝑥2) = 0.1, where𝐺 (¤) (e.g.,
information gain) is the heuristic measure used to choose spitting
attributes, and 𝑥1 and 𝑥2 are the best and second best splitting
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attributes for the 𝑛 training data points. Then for some fraction 𝛿 ,
there will be a 1 − 𝛿 chance that 𝐺 (𝑥1) −𝐺 (𝑥2) > 0.1 − 𝜖 .

2.2 Adaptive Hoeffding Tree
The Adaptive Hoeffding Tree [1] will hold a variable-length win-
dow𝑊 of recently seen data. We will have 1 − 𝛿 confidence that
the splitting attribute has changed if the two windows are "large
enough", and their heuristic measurement are "distinct enough". To
define "large enough" and "distinct enough", the Adaptive Hoeffing
tree uses the Hoeffding bound:, when |𝐺 (𝑊 ) −𝐺 (𝑥1) | is larger than
2 ∗ 𝜖 . In scikit-multiflow’s implementation, a bootstrap sampling
strategy is applied to improve the algorithm’s time performance.

2.3 iSOUP-Tree
In contrast to the Hoeffding Tree, the iSOUP-Tree [16] uses the
FIMT-DD method [10]. That works as follows. There are two learn-
ers at each leaf to make predictions. One learner is a linear function
𝑦 = 𝑤𝑥 + 𝑏 used to predict the result, where𝑤 and 𝑏 are variables
trained with the data and the results that have already arrived at
this leaf, 𝑦 is the prediction result, and 𝑋 is the input data. The
other learner computes the average value of the 𝑦 from the training
data seen so far. The learner with the lower absolute error will be
used to make predictions. Different leaves in the same tree may
choose different learners.

2.4 Adaptive Random Forest
The Adaptive Random Forest [7] is a random forest, each of whose
trees is a Hoeffding Tree without early pruning. Whenever a new
node is created, a random subset of features with a certain size is
selected. Split attempts are limited to these features for the given
node. The number of features in each subset is a hyperparameter
that was set before training and will not change any more. The data
is randomly selected with replacement from the training set, while
the chance for each data item to be selected is determined by a bino-
mial distribution. To detect concept drift, it uses the the method of
the Adaptive Hoeffding Tree as described above. Further, each tree
has two confidence interval levels to reflect its poor performance
in the face of concept drift. When the lower confidence level of a
tree is reached (meaning the tree has not been performing well),
the Random Forest will create a new background tree that trains
like any other tree in the forest, but the background tree will not
contribute to the prediction. If the tree already has one background
tree, the older one will be replaced. When the higher confidence
level of a tree is reached (meaning the tree has been performing
very badly), the Random Forest will delete that tree and replace it
with the corresponding background tree.

3 FORGETFUL DATA STRUCTURES

This paper introduces both a Forgetful Decision Tree and a Forgetful
Random Forest. They sequentially and probabilistically forget old
data and combine the retained old data with new data to track
datasets that may undergo concept drift. In the process, the values
of several hyperparameters are adjusted depending on the relative
accuracy of the data structure at hand (whether a decision tree or a
random forest). We present the overall algorithms in subsections

4.4 and 4.5 but first we present the subroutines, each of which takes
several input parameters.

The accuracy in this paper is measured based on the confusion
matrix: the proportion of true positive plus true negative instances
relative to all test samples:

|𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑖𝑛 𝑡𝑒𝑠𝑡𝑠𝑒𝑡 | + |𝑇𝑟𝑢𝑒𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑖𝑛 𝑡𝑒𝑠𝑡𝑠𝑒𝑡 |
𝑆𝑖𝑧𝑒 (𝑡𝑒𝑠𝑡𝑠𝑒𝑡)

3.1 Forgetful decision trees
When new data is acquired from the data stream, function
𝑈𝑝𝑑𝑎𝑡𝑒𝑆𝑢𝑏𝑇𝑟𝑒𝑒 (.) (Algorithm 2) will be called on the root node to
incrementally and recursively update the entire decision tree.

• The stopping criteria 𝐸 (·) may comprise maximum tree
height, minimum samples to split, or minimum impurity
decrease. If it returns 𝑇𝑟𝑢𝑒 , then the node is not further
split. Also, if all data in some node have the same label, that
node will not be further split.

Algorithm 1: BuildSubTree
input :This is called when a subtree must be rebuilt from

scratch.
𝑋 , 𝑌 , incoming training data batch for current

node
𝐸 (·), the stopping criteria, returns boolean
𝐺 (·), a function to score the fitness of a feature for

splitting.
global :𝑐𝑢𝑟𝑟𝑒𝑛𝑡 .𝑋, 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 .𝑌 , the data retained

𝑐𝑢𝑟𝑟𝑒𝑛𝑡 .𝑔𝑅𝑒𝑐𝑜𝑟𝑑 , the sorted data retained
𝑐𝑢𝑟𝑟𝑒𝑛𝑡 .𝑟𝑎𝑛𝑔𝑒𝑠 , the ranges for splitting retained
𝑐𝑢𝑟𝑟𝑒𝑛𝑡 .𝑙𝑎𝑏𝑒𝑙 , the prediction label

1 begin
2 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 .𝑋, 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 .𝑌 ←𝑋,𝑌 ;
3 if E(𝑐𝑢𝑟𝑟𝑒𝑛𝑡 , 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 .𝑋 , 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 .𝑌 ) is 𝑇𝑟𝑢𝑒 then
4 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 .𝑙𝑎𝑏𝑒𝑙 ← the class having the greatest

probability;
5 else
6 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 .𝑔𝑅𝑒𝑐𝑜𝑟𝑑, 𝑟𝑎𝑛𝑔𝑒𝑠 ← minG(X, Y);
7 // find the best value ranges
8 𝑋𝑠,𝑌𝑠 ← Split (𝑐𝑢𝑟𝑟𝑒𝑛𝑡 .𝑋 , 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 .𝑌 ) at 𝑟𝑎𝑛𝑔𝑒𝑠𝑠 ;
9 i=0;

10 for each 𝑥,𝑦 in 𝑋𝑠,𝑌𝑠 do
11 𝑐ℎ𝑖𝑙𝑑 ←

𝐵𝑢𝑖𝑙𝑑𝑆𝑢𝑏𝑇𝑟𝑒𝑒 (𝑥,𝑦, 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 .𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛[𝑖], 𝐸 (.),𝐺 (.));

12 𝑖 + +;
13 end
14 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 .𝑟𝑎𝑛𝑔𝑒𝑠 ← 𝑟𝑎𝑛𝑔𝑒𝑠;
15 end
16 end

• The evaluation function 𝐺 (·) evaluates the score of each
feature and each range for splitting. It will typically be a
Gini Impurity[6] score or an entropy reduction coefficient.
As we discuss below, the functions𝑚𝑖𝑛𝐺 and𝑚𝑖𝑛𝐺𝐼𝑛𝑐 find
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split points that minimize the weighted sum of scores of
each subset of the data after splitting. Thus, the score must
be evaluated on many split points (e.g., if the input attribute
is 𝑎𝑔𝑒 , then possible splitting criteria could be 𝑎𝑔𝑒 > 30,
𝑎𝑔𝑒 > 32, ...) to find the optimal ranges. Those evaluations
run much faster if the data is sorted for each input attribute.

• 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑃𝑎𝑟𝑎𝑚𝑠.𝑟𝑆𝑖𝑧𝑒 governs the size of 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 .𝑋 +𝑋 and
𝑐𝑢𝑟𝑟𝑒𝑛𝑡 .𝑌 + 𝑌 to be retained, when new data for 𝑋 and
𝑌 arrives. For example, suppose 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑃𝑎𝑟𝑎𝑚𝑠.𝑟𝑆𝑖𝑧𝑒 =

100. Then 𝑠𝑖𝑧𝑒 (𝑋 ) + 𝑠𝑖𝑧𝑒 (𝑐𝑢𝑟𝑟𝑒𝑛𝑡 .𝑋 ) − 100 of the oldest
of 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 .𝑋 and 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 .𝑌 (the data present before the
incoming batch) will be discarded. The algorithm then ap-
pends𝑋 and𝑌 to what remains of 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 .𝑋 and 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 .𝑌 .
All nodes in the subtrees will discard the same data items
as the root node. In this way, the tree is trained with only
the newest 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑃𝑎𝑟𝑎𝑚𝑠.𝑟𝑆𝑖𝑧𝑒 of data in the tree. Dis-
carding old data will help overcome concept drift, because
the newer data better reflects the mapping from 𝑋 to 𝑌

after concept drift. 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑃𝑎𝑟𝑎𝑚𝑠.𝑟𝑆𝑖𝑧𝑒 should never be
less than 𝑠𝑖𝑧𝑒 (𝑋 ), because we don’t want to forget any
new incoming data. 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑃𝑎𝑟𝑎𝑚𝑠.𝑟𝑆𝑖𝑧𝑒 is computed in
algorithm 3 below and will will be explained in subsection
3.2.

After the retained old data is concatenated with the incoming
batch data, the decision tree is updated in a top-down fashion using
the𝑈𝑝𝑑𝑎𝑡𝑒𝑆𝑢𝑏𝑇𝑟𝑒𝑒 (.) function based on 𝐺 (.).

In the 𝐵𝑢𝑖𝑙𝑑𝑆𝑢𝑏𝑇𝑟𝑒𝑒 (.) function,𝑚𝑖𝑛𝐺 (·) will sort the data at
the current node by all its features and store the order in the current
node. By contrast, in the Incremental Update (𝑈𝑝𝑑𝑎𝑡𝑒𝑆𝑢𝑏𝑇𝑟𝑒𝑒 (.)
function), 𝑚𝑖𝑛𝐺𝐼𝑛𝑐 (·) will sort only the incoming data (from 𝑋

and 𝑌 ) and merge it with the previous data that is already sorted.
Merging is of course faster than sorting, which conveys a time
advantage to𝑈𝑝𝑑𝑎𝑡𝑒𝑆𝑢𝑏𝑇𝑟𝑒𝑒 (.) compared with 𝐵𝑢𝑖𝑙𝑑𝑆𝑢𝑏𝑇𝑟𝑒𝑒 (.).

At every interior node, function𝑚𝑖𝑛𝐺𝐼𝑛𝑐 (.) calculates a score
for every feature by evaluating function 𝐺 on the data allocated
to the current node. This calculation leads to the identification of
the best feature and best value (or potentially values) to split on,
while the splitting gives rise to two or more ranges for a feature.
The data discarded in line 2 of (Algorithm 2) will not be considered
by𝑚𝑖𝑛𝐺𝐼𝑛𝑐 (.). If, at some node, the best splitting value (or values)
is different from the choice before the arrival of the new data, the
algorithm rebuilds the subtree with the data retained in 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 as
well as the new data allocated to this node (the 𝐵𝑢𝑖𝑙𝑑𝑆𝑢𝑏𝑇𝑟𝑒𝑒 (.)
function described in (Algorithm 1). Otherwise, if the new best value
range is the same as the range from the old tree, the algorithm splits
only the incoming data among the children and then recursively
calls the𝑈𝑝𝑑𝑎𝑡𝑒𝑆𝑢𝑏𝑇𝑟𝑒𝑒 (.) function on these children nodes.

In summary, the forgetting strategy ensures that the model is
trained only on the newest 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑃𝑎𝑟𝑎𝑚𝑠.𝑟𝑆𝑖𝑧𝑒 data. The rebuild-
ing strategy determines whether a split point can be retained in
which case tree reconstruction is vastly accelerated. Even if not,
the calculation of the split point based on 𝐺 (.) (e.g. Gini score) is
somewhat accelerated because the relevant data is already nearly
sorted.

3.2 Adaptive Calculation of Retain Size and Max
Tree Height

Retaining more historical data (larger 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑃𝑎𝑟𝑎𝑚𝑠.𝑟𝑆𝑖𝑧𝑒) will
result in higher accuracy when there is no concept drift, because
the old information is useful. When concept drift occurs,
𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑃𝑎𝑟𝑎𝑚𝑠.𝑟𝑆𝑖𝑧𝑒 should be small, because old informationwon’t
reflect the new concept (which is some new mapping from input
to label). Of course, a smaller 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑃𝑎𝑟𝑎𝑚𝑠.𝑟𝑆𝑖𝑧𝑒 will result in
increased speed. Thus, changing 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑃𝑎𝑟𝑎𝑚𝑠.𝑟𝑆𝑖𝑧𝑒 can improve
accuracy and reduce time. We use the following rules:

• When accuracy increases (i.e., the more recent predictions
have been more accurate than previous ones) a lot, the
model can make good use of more data, we want
𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑃𝑎𝑟𝑎𝑚𝑠.𝑟𝑆𝑖𝑧𝑒 to increase with the effect that we
discard little or no data. When the accuracy increase is
mild, the model has perhaps achieved an accuracy plateau,
so we increase 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑃𝑎𝑟𝑎𝑚𝑠.𝑟𝑆𝑖𝑧𝑒 , but only slightly.

• When accuracy decreases, we want to decrease
𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑃𝑎𝑟𝑎𝑚𝑠.𝑟𝑆𝑖𝑧𝑒 to forget old data, because this in-
dicates that concept drift has happened. When accuracy
decreases a lot, the new data may follow completely dif-
ferent rules from the old data, so we want to forget most
of the old data, suggesting 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑃𝑎𝑟𝑎𝑚𝑠.𝑟𝑆𝑖𝑧𝑒 should be
very small. When concept drift is mild and accuracy de-
creases only a little, we want to retain more old data, so
𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑃𝑎𝑟𝑎𝑚𝑠.𝑟𝑆𝑖𝑧𝑒 should decrease only a little.
• When accuracy changes little or not at all, we allow

𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑃𝑎𝑟𝑎𝑚𝑠.𝑟𝑆𝑖𝑧𝑒 to slowly increase.

To achieve the above requirements, we use the𝐴𝑑𝑎𝑝𝑡𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 (.)
function (Algorithm 3). That function performs adaptively changes
𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑃𝑎𝑟𝑎𝑚𝑠.𝑟𝑆𝑖𝑧𝑒 ,𝑚𝑎𝑥𝐻𝑒𝑖𝑔ℎ𝑡 , and 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑃𝑎𝑟𝑎𝑚𝑠.𝑖𝑅𝑎𝑡𝑒 based
on the change in accuracy. It is called when new data is acquired
from the data stream and before function 𝑈𝑝𝑑𝑎𝑡𝑒𝑆𝑢𝑏𝑇𝑟𝑒𝑒 (.) [Al-
gorithm 2] is called. The 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑃𝑎𝑟𝑎𝑚𝑠.𝑟𝑆𝑖𝑧𝑒 and𝑚𝑎𝑥𝐻𝑒𝑖𝑔ℎ𝑡 will
be applied to the parameters when calling𝑈𝑝𝑑𝑎𝑡𝑒𝑆𝑢𝑏𝑇𝑟𝑒𝑒 (.). The
𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑃𝑎𝑟𝑎𝑚𝑠.𝑖𝑅𝑎𝑡𝑒 and 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑃𝑎𝑟𝑎𝑚𝑠.𝑟𝑆𝑖𝑧𝑒 will also be inputs
to the next call to the 𝐴𝑑𝑎𝑝𝑡𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 (.) function on this tree.

The 𝐴𝑑𝑎𝑝𝑡𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 (.) function will first test the accuracy
of the model on new incoming data yielding 𝑛𝑒𝑤𝐴𝑐𝑐 . The func-
tion then recalls the accuracy that was tested last time as 𝑙𝑎𝑠𝑡𝐴𝑐𝑐 .
Next, because we want 𝑛𝑒𝑤𝐴𝑐𝑐 and 𝑙𝑎𝑠𝑡𝐴𝑐𝑐 to improve upon ran-
dom guessing, we subtract the accuracy of random guessing from
𝑛𝑒𝑤𝐴𝑐𝑐 and from 𝑙𝑎𝑠𝑡𝐴𝑐𝑐 (the 𝑔𝑢𝑒𝑠𝑠𝐴𝑐𝑐 was already subtracted
from 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑃𝑎𝑟𝑎𝑚𝑠.𝑙𝑎𝑠𝑡𝐴𝑐𝑐 in the last update). We take the accu-
racy of random guessing (𝑔𝑢𝑒𝑠𝑠𝐴𝑐𝑐) to be 1/𝑛𝐶𝑙𝑎𝑠𝑠𝑒𝑠 .1 The intuitive
reason to subtract 𝑔𝑢𝑒𝑠𝑠𝐴𝑐𝑐 is that a 𝑙𝑎𝑠𝑡𝐴𝑐𝑐 that is no greater than
𝑔𝑢𝑒𝑠𝑠𝐴𝑐𝑐 suggests that the model is no better than guessing just
based on the number of classes. That in turn suggests that concept
drift has likely occurred and so old data should be discarded.

1We have tried to set 𝑔𝑢𝑒𝑠𝑠𝐴𝑐𝑐 to the accuracy of guessing the most frequent class
always. That would be a good random strategy for skewed data. But after testing,
we found 𝑔𝑢𝑒𝑠𝑠𝐴𝑐𝑐 = 1/𝑛𝐶𝑙𝑎𝑠𝑠𝑒𝑠 has a higher accuracy when the batch size is
small and the dataset is very skewed towards one class. Otherwise, the two values of
𝑔𝑢𝑒𝑠𝑠𝐴𝑐𝑐 have similar accuracy.
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Algorithm 2: UpdateSubTree
input :𝑋 , 𝑌 , incoming batch of training data for current

node
𝐸 (·), the stopping criteria
𝐺 (·), the function to score the fitness of a feature

for splitting
global :𝑐𝑢𝑟𝑟𝑒𝑛𝑡 .𝑋, 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 .𝑌 , the data retained of previous

update
𝑐𝑢𝑟𝑟𝑒𝑛𝑡 .𝑔𝑅𝑒𝑐𝑜𝑟𝑑 , the sorted data retained of

previous update
𝑐𝑢𝑟𝑟𝑒𝑛𝑡 .𝑟𝑎𝑛𝑔𝑒𝑠 , the ranges for splitting retained of

previous update
𝑐𝑢𝑟𝑟𝑒𝑛𝑡 .𝑙𝑎𝑏𝑒𝑙 , the prediction label

1 begin
2 Discard the oldest

(𝑠𝑖𝑧𝑒 (𝑋 ) + 𝑠𝑖𝑧𝑒 (𝑐𝑢𝑟𝑟𝑒𝑛𝑡 .𝑋 ) − 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑃𝑎𝑟𝑎𝑚𝑠.𝑟𝑆𝑖𝑧𝑒)
rows in 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 .𝑋 and 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 .𝑌 ;

3 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 .𝑋, 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 .𝑌 ← 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 .𝑋 + 𝑋, 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 .𝑌 + 𝑌 ;
4 // insert the incoming batch, 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑃𝑎𝑟𝑎𝑚𝑠.𝑟𝑆𝑖𝑧𝑒 rows

will be in 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 after insertion.
5 if E(𝑐𝑢𝑟𝑟𝑒𝑛𝑡 , 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 .𝑋 , 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 .𝑌 ) is 𝑇𝑟𝑢𝑒 then
6 // don’t split subtree more
7 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 .𝑙𝑎𝑏𝑒𝑙 ← the class having the greatest

probability;
8 else
9 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 .𝑔𝑅𝑒𝑐𝑜𝑟𝑑, 𝑟𝑎𝑛𝑔𝑒𝑠 ←

𝑚𝑖𝑛𝐺𝐼𝑛𝑐 (𝑋,𝑌,𝐺, 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 .𝑔𝑅𝑒𝑐𝑜𝑟𝑑);
10 // find the best value ranges
11 for each 𝑟𝑎𝑛𝑔𝑒 in 𝑟𝑎𝑛𝑔𝑒𝑠 do
12 𝑐ℎ𝑖𝑙𝑑 ← 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 .𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛[𝑖];
13 if 𝑟𝑎𝑛𝑔𝑒 not in 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 .𝑟𝑎𝑛𝑔𝑒𝑠 then
14 // we need to rebuild subtree
15 𝑥,𝑦 ← Split (𝑐𝑢𝑟𝑟𝑒𝑛𝑡 .𝑋 , 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 .𝑌 ) at 𝑟𝑎𝑛𝑔𝑒;
16 𝑐ℎ𝑖𝑙𝑑 ←

𝐵𝑢𝑖𝑙𝑑𝑆𝑢𝑏𝑇𝑟𝑒𝑒 (𝑥,𝑦, 𝑐ℎ𝑖𝑙𝑑, 𝐸 (.),𝐺 (.));
17 else
18 𝑥,𝑦 ← Split (𝑋 , 𝑌 ) at 𝑟𝑎𝑛𝑔𝑒 ;
19 𝑐ℎ𝑖𝑙𝑑 ←𝑈𝑝𝑑𝑎𝑡𝑒𝑆𝑢𝑏𝑇𝑟𝑒𝑒 (x, y, child, E(.),

G(.), child.(X, Y, gRecord, ranges,
label),currentParams.rSize);

20 end
21 𝑖 + +;
22 end
23 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 .𝑟𝑎𝑛𝑔𝑒𝑠 ← 𝑟𝑎𝑛𝑔𝑒𝑠;
24 end
25 end

Following that, 𝐴𝑑𝑎𝑝𝑡𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 (.) will calculate the rate of
change (𝑟𝐶ℎ𝑎𝑛𝑔𝑒) of 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑃𝑎𝑟𝑎𝑚𝑠.𝑟𝑆𝑖𝑧𝑒 by the equation on line
23 of Algorithm 3:

• When 𝑛𝑒𝑤𝐴𝑐𝑐/𝑙𝑎𝑠𝑡𝐴𝑐𝑐 >= 1, the 𝑚𝑎𝑥 in the exponent
will ensure that 𝑟𝐶ℎ𝑎𝑛𝑔𝑒 will be (𝑛𝑒𝑤𝐴𝑐𝑐/𝑙𝑎𝑠𝑡𝐴𝑐𝑐)2. In this
way, the 𝑟𝐶ℎ𝑎𝑛𝑔𝑒 curves slightly upward when 𝑛𝑒𝑤𝐴𝑐𝑐 is

Algorithm 3: AdaptParameters
input :𝑋 , 𝑌 , incoming training data
output :𝑚𝑎𝑥𝐻𝑒𝑖𝑔ℎ𝑡 , the maximum height of the tree.
global :𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑃𝑎𝑟𝑎𝑚𝑠.𝑖𝑅𝑎𝑡𝑒 , the increase rate of

𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑃𝑎𝑟𝑎𝑚𝑠.𝑟𝑆𝑖𝑧𝑒 when the accuracy is stable
𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑃𝑎𝑟𝑎𝑚𝑠.𝑟𝑆𝑖𝑧𝑒 , the retain size of data
𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑃𝑎𝑟𝑎𝑚𝑠.𝑤𝑎𝑟𝑚𝑆𝑖𝑧𝑒 , minimum size of the

data for the decision tree to be considered ready to test
𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑃𝑎𝑟𝑎𝑚𝑠.𝑐𝑜𝑙𝑑𝑆𝑡𝑎𝑟𝑡𝑢𝑝 , 𝑇𝑟𝑢𝑒 if the decision

tree is in Cold Startup mode.
𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑃𝑎𝑟𝑎𝑚𝑠.(𝑙𝑎𝑠𝑡𝐴𝑐𝑐, 𝑙𝑎𝑠𝑡𝑆𝑖𝑧𝑒), the accuracy

and data size of testing of previous update
1 begin
2 𝑔𝑢𝑒𝑠𝑠𝐴𝑐𝑐 ← 1/𝑛𝐶𝑙𝑎𝑠𝑠𝑒𝑠;
3 // 𝑛𝐶𝑙𝑎𝑠𝑠𝑒𝑠 is the number of classes in 𝑌
4 𝑛𝑒𝑤𝐴𝑐𝑐 ← 𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒 (𝑋,𝑌 ) − 𝑔𝑢𝑒𝑠𝑠𝐴𝑐𝑐 ;
5 𝑙𝑎𝑠𝑡𝐴𝑐𝑐 ← 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑃𝑎𝑟𝑎𝑚𝑠.𝑙𝑎𝑠𝑡𝐴𝑐𝑐;
6 // accuracy on latest batch
7 if 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑃𝑎𝑟𝑎𝑚𝑠.𝑐𝑜𝑙𝑑𝑆𝑡𝑎𝑟𝑡𝑢𝑝 == 𝑇𝑟𝑢𝑒 then
8 while

𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑃𝑎𝑟𝑎𝑚𝑠.𝑟𝑆𝑖𝑧𝑒 + 𝑠𝑖𝑧𝑒 (𝑋 )>=currentParams.warmSize
do

9 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑃𝑎𝑟𝑎𝑚𝑠.𝑤𝑎𝑟𝑚𝑆𝑖𝑧𝑒 ←
2 ∗ 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑃𝑎𝑟𝑎𝑚𝑠.𝑤𝑎𝑟𝑚𝑆𝑖𝑧𝑒;

10 if on the last 50% of the data, accuracy is better
than current 𝑔𝑢𝑒𝑠𝑠𝐴𝑐𝑐 then

11 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑃𝑎𝑟𝑎𝑚𝑠.𝑐𝑜𝑙𝑑𝑆𝑡𝑎𝑟𝑡𝑢𝑝 ← 𝐹𝑎𝑙𝑠𝑒;
12 // no longer in startup mode

𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑃𝑎𝑟𝑎𝑚𝑠.(𝑙𝑎𝑠𝑡𝐴𝑐𝑐, 𝑙𝑎𝑠𝑡𝑆𝑖𝑧𝑒) ←
𝑛𝑒𝑤𝐴𝑐𝑐 − 1/𝑛𝐶𝑙𝑎𝑠𝑠𝑒𝑠, 𝑠𝑖𝑧𝑒 (𝑋);

13 continue;
14 end
15 end
16 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑃𝑎𝑟𝑎𝑚𝑠.𝑟𝑆𝑖𝑧𝑒 ←

𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑃𝑎𝑟𝑎𝑚𝑠.𝑟𝑆𝑖𝑧𝑒 + 𝑠𝑖𝑧𝑒 (𝑋 );
17 else
18 if 𝑛𝑒𝑤𝐴𝑐𝑐 <= 0 then
19 // we have left startup mode but our accuracy is

bad, indicating concept drift
𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑃𝑎𝑟𝑎𝑚𝑠.𝑟𝑆𝑖𝑧𝑒 ← 𝑠𝑖𝑧𝑒 (𝑋)

20 else if 𝑜𝑙𝑑𝐴𝑐𝑐 <= 0 then
21 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑃𝑎𝑟𝑎𝑚𝑠.𝑟𝑆𝑖𝑧𝑒 ←

𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑃𝑎𝑟𝑎𝑚𝑠.𝑟𝑆𝑖𝑧𝑒 + 𝑠𝑖𝑧𝑒 (𝑋 );
22 else
23 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑃𝑎𝑟𝑎𝑚𝑠.𝑖𝑅𝑎𝑡𝑒 ←

𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑃𝑎𝑟𝑎𝑚𝑠.𝑖𝑅𝑎𝑡𝑒 ∗ 𝑙𝑎𝑠𝑡𝐴𝑐𝑐/𝑛𝑒𝑤𝐴𝑐𝑐;
24 𝑟𝐶ℎ𝑎𝑛𝑔𝑒 ←

(𝑛𝑒𝑤𝐴𝑐𝑐/𝑙𝑎𝑠𝑡𝐴𝑐𝑐) (𝑚𝑎𝑥 (2,(3−𝑛𝑒𝑤𝐴𝑐𝑐/𝑙𝑎𝑠𝑡𝐴𝑐𝑐))) ;
25 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑃𝑎𝑟𝑎𝑚𝑠.𝑟𝑆𝑖𝑧𝑒 ←

𝑚𝑖𝑛(𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑃𝑎𝑟𝑎𝑚𝑠.𝑟𝑆𝑖𝑧𝑒 ∗ 𝑟𝐶ℎ𝑎𝑛𝑔𝑒 +
𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑃𝑎𝑟𝑎𝑚𝑠.𝑖𝑅𝑎𝑡𝑒 ∗
𝑠𝑖𝑧𝑒 (𝑋), 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑃𝑎𝑟𝑎𝑚𝑠.𝑟𝑆𝑖𝑧𝑒 + 𝑠𝑖𝑧𝑒 (𝑋);

26 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑃𝑎𝑟𝑎𝑚𝑠.(𝑙𝑎𝑠𝑡𝐴𝑐𝑐, 𝑙𝑎𝑠𝑡𝑆𝑖𝑧𝑒) ←
𝑛𝑒𝑤𝐴𝑐𝑐, 𝑠𝑖𝑧𝑒 (𝑋);

27 end
28 end
29 if 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑃𝑎𝑟𝑎𝑚𝑠.𝑟𝑆𝑖𝑧𝑒 < 𝑠𝑖𝑧𝑒 (𝑋 ) then
30 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑃𝑎𝑟𝑎𝑚𝑠.𝑟𝑆𝑖𝑧𝑒 ← 𝑠𝑖𝑧𝑒 (𝑋 );
31 end
32 𝑚𝑎𝑥𝐻𝑒𝑖𝑔ℎ𝑡 ← 𝑙𝑜𝑔2(𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑃𝑎𝑟𝑎𝑚𝑠.𝑟𝑆𝑖𝑧𝑒);
33 end
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equal to, or slightly higher than 𝑙𝑎𝑠𝑡𝐴𝑐𝑐 , but curves steeply
upward when 𝑛𝑒𝑤𝐴𝑐𝑐 is much larger than 𝑙𝑎𝑠𝑡𝐴𝑐𝑐 .

• When 𝑛𝑒𝑤𝐴𝑐𝑐/𝑙𝑎𝑠𝑡𝐴𝑐𝑐 < 1, 𝑟𝐶ℎ𝑎𝑛𝑔𝑒 is equal to
(𝑛𝑒𝑤𝐴𝑐𝑐/𝑙𝑎𝑠𝑡𝐴𝑐𝑐)3−𝑛𝑒𝑤𝐴𝑐𝑐/𝑙𝑎𝑠𝑡𝐴𝑐𝑐 . In this way, 𝑟𝐶ℎ𝑎𝑛𝑔𝑒
is flat or curves slightly downward when 𝑛𝑒𝑤𝐴𝑐𝑐 is slightly
lower than 𝑙𝑎𝑠𝑡𝐴𝑐𝑐 but curves very steeply downwards
when 𝑛𝑒𝑤𝐴𝑐𝑐 is much lower than 𝑙𝑎𝑠𝑡𝐴𝑐𝑐 .

Other functions to set 𝑟𝐶ℎ𝑎𝑛𝑔𝑒 are possible, but this one has the
following properties that we expected: (i) it is continuous regardless
of the values of newAcc and lastAcc; (ii) 𝑟𝐶ℎ𝑎𝑛𝑔𝑒 is close to 1 when
𝑛𝑒𝑤𝐴𝑐𝑐 is close to 𝑙𝑎𝑠𝑡𝐴𝑐𝑐; (iii) when 𝑛𝑒𝑤𝐴𝑐𝑐 differs from 𝑙𝑎𝑠𝑡𝐴𝑐𝑐

significantly in either direction, 𝑟𝐶ℎ𝑎𝑛𝑔𝑒 reacts strongly.
Finally, wewill calculate and update the new 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑃𝑎𝑟𝑎𝑚𝑠.𝑟𝑆𝑖𝑧𝑒

by multiplying the old 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑃𝑎𝑟𝑎𝑚𝑠.𝑟𝑆𝑖𝑧𝑒 by 𝑟𝐶ℎ𝑎𝑛𝑔𝑒 . To effect
a slow increase in 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑃𝑎𝑟𝑎𝑚𝑠.𝑟𝑆𝑖𝑧𝑒 when 𝑛𝑒𝑤𝐴𝑐𝑐 ≈ 𝑙𝑎𝑠𝑡𝐴𝑐𝑐

and 𝑟𝐶ℎ𝑎𝑛𝑔𝑒 ≈ 1, we increase 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑃𝑎𝑟𝑎𝑚𝑠.𝑟𝑆𝑖𝑧𝑒 by
𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑃𝑎𝑟𝑎𝑚𝑠.𝑖𝑅𝑎𝑡𝑒 ∗ 𝑠𝑖𝑧𝑒 (𝑋 ) in additional to
𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑃𝑎𝑟𝑎𝑚𝑠.𝑟𝑆𝑖𝑧𝑒 (𝑜𝑙𝑑) ∗ 𝑟𝐶ℎ𝑎𝑛𝑔𝑒 , where 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑃𝑎𝑟𝑎𝑚𝑠.𝑖𝑅𝑎𝑡𝑒

(the increase rate) is a number that is maintained from one call to
𝐴𝑑𝑎𝑝𝑡𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 (.) to another. The𝑚𝑖𝑛 in line 25 reflects the fact
that the size of the incoming data is 𝑠𝑖𝑧𝑒 (𝑋 ), so 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑃𝑎𝑟𝑎𝑚𝑠.𝑟𝑆𝑖𝑧𝑒

cannot increase by more than 𝑠𝑖𝑧𝑒 (𝑋 ). Also, we do not allow
𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑃𝑎𝑟𝑎𝑚𝑠.𝑟𝑆𝑖𝑧𝑒 to be less than 𝑠𝑖𝑧𝑒 (𝑋 ), because we do not
want to forget any new incoming data. When 𝐴𝑑𝑎𝑝𝑡𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 (.)
is called the first time, we will set 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑃𝑎𝑟𝑎𝑚𝑠.𝑟𝑆𝑖𝑧𝑒 = 𝑠𝑖𝑧𝑒 (𝑋 ) +
𝑠𝑖𝑧𝑒 (𝑐𝑢𝑟𝑟𝑒𝑛𝑡 .𝑋 ).

The two special cases of lines 18 through 21 happen when
𝑛𝑒𝑤𝐴𝑐𝑐 <= 0 or 𝑙𝑎𝑠𝑡𝐴𝑐𝑐 <= 0. When 𝑛𝑒𝑤𝐴𝑐𝑐 <= 0, the prediction
of the model is no better than random guessing. In that case, we
infer that the old data cannot help in predicting new data, so we will
forget all of the old data by setting 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑃𝑎𝑟𝑎𝑚𝑠.𝑟𝑆𝑖𝑧𝑒 = 𝑠𝑖𝑧𝑒 (𝑋 ).
When 𝑙𝑎𝑠𝑡𝐴𝑐𝑐 <= 0 but 𝑛𝑒𝑤𝐴𝑐𝑐 > 0, then all the old data may be
useful. So we set 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑃𝑎𝑟𝑎𝑚𝑠.𝑟𝑆𝑖𝑧𝑒 = 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑃𝑎𝑟𝑎𝑚𝑠.𝑟𝑆𝑖𝑧𝑒 +
𝑠𝑖𝑧𝑒 (𝑋 ).

The above adaptation strategy requires a dampening parameter
𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑃𝑎𝑟𝑎𝑚𝑠.𝑖𝑅𝑎𝑡𝑒 to limit the increase rate of 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑃𝑎𝑟𝑎𝑚𝑠.

𝑟𝑆𝑖𝑧𝑒 . When the accuracy is large, themodel may be close to its max-
imum possible accuracy, so we may want a smaller 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑃𝑎𝑟𝑎𝑚𝑠.

𝑖𝑅𝑎𝑡𝑒 and in turn to increase 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑃𝑎𝑟𝑎𝑚𝑠.𝑟𝑆𝑖𝑧𝑒 slower. After a
drastic concept drift event, when the accuracy has been significantly
decreased, we want to increase 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑃𝑎𝑟𝑎𝑚𝑠.𝑖𝑅𝑎𝑡𝑒 to retain more
new data after forgetting most of the old data. This will shorten the
duration of the cold start after the concept drift. To achieve this,
we will adaptively change it as follows: 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑃𝑎𝑟𝑎𝑚𝑠.𝑖𝑅𝑎𝑡𝑒 (𝑛𝑒𝑤)
equal to 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑃𝑎𝑟𝑎𝑚𝑠.𝑖𝑅𝑎𝑡𝑒 (𝑜𝑙𝑑) ∗ 𝑙𝑎𝑠𝑡𝐴𝑐𝑐/𝑛𝑒𝑤𝐴𝑐𝑐 before each
time 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑃𝑎𝑟𝑎𝑚𝑠.𝑟𝑆𝑖𝑧𝑒 is updated, as in line 23 of (algorithm 3).
𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑃𝑎𝑟𝑎𝑚𝑠.𝑖𝑅𝑎𝑡𝑒 will not be changed if either 𝑙𝑎𝑠𝑡𝐴𝑐𝑐 <= 0 or
𝑛𝑒𝑤𝐴𝑐𝑐 <= 0.

Upon initialization, if the first increment is small, then 𝑛𝑒𝑤𝐴𝑐𝑐

may not exceed 1/𝑛𝐶𝑙𝑎𝑠𝑠𝑒𝑠 , and the model will forget all of the old
data every time. To avoid such poor performance at cold start, the
Forgetful Decision Tree will be initialized in Cold Startup mode.
In that Cold Startup mode, the Forgetful Decision Tree will not
forget any data (line 16 in algorithm 3). When 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑃𝑎𝑟𝑎𝑚𝑠.𝑟𝑆𝑖𝑧𝑒

reaches 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑃𝑎𝑟𝑎𝑚𝑠.𝑤𝑎𝑟𝑚𝑆𝑖𝑧𝑒 , the Forgetful Decision Tree will
leave Cold Startup mode if 𝑛𝑒𝑤𝐴𝑐𝑐 is better than 𝑔𝑢𝑒𝑠𝑠𝐴𝑐𝑐 since

the last 50% of data arrived. Otherwise, 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑃𝑎𝑟𝑎𝑚𝑠.𝑤𝑎𝑟𝑚𝑆𝑖𝑧𝑒

will be doubled. The above process will be repeated until leaving
the Cold Startup mode.

Max tree height is closely related to the size of data retained
in the tree. We want each leaf node to have about one data item
on average when the tree is perfectly balanced, so we always set
𝑚𝑎𝑥𝐻𝑒𝑖𝑔ℎ𝑡 = 𝑙𝑜𝑔2(𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑃𝑎𝑟𝑎𝑚𝑠.𝑟𝑆𝑖𝑧𝑒).

In summary, algorithm 3 provide amethod to adjust 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑃𝑎𝑟𝑎𝑚𝑠.

𝑟𝑆𝑖𝑧𝑒 ,𝑚𝑎𝑥𝐻𝑒𝑖𝑔ℎ𝑡 , and 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑃𝑎𝑟𝑎𝑚𝑠.𝑖𝑅𝑎𝑡𝑒 . We still need an ini-
tial value of 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑃𝑎𝑟𝑎𝑚𝑠.𝑖𝑅𝑎𝑡𝑒 . We show experimentally how
to find that in section 4.1.

3.3 Forgetful random forests.
When new data is acquired from the data stream, the𝑈𝑝𝑑𝑎𝑡𝑒𝐹𝑜𝑟𝑒𝑠𝑡 (.)
function (Algorithm 4) will incrementally update the entire random
forest.

The Forgetful Random Forest (Algorithm 4) is based on the For-
getful Decision Tree described above in section 3.1. Each Random
Forest contains𝑛𝑇𝑟𝑒𝑒 decision trees. The𝑈𝑝𝑑𝑎𝑡𝑒𝑆𝑢𝑏𝑇𝑟𝑒𝑒𝑅𝐹 (.) and
𝐵𝑢𝑖𝑙𝑑𝑆𝑢𝑏𝑇𝑟𝑒𝑒𝑅𝐹 (.) functions for each decision tree in the Random
Forest are the same as those from the decision tree algorithms
described in section 3.1 except:

• Only a limited number of features are considered at each
split, increasing the chance of invoking 𝑈𝑝𝑑𝑎𝑡𝑒𝑆𝑢𝑏𝑇𝑟𝑒𝑒 (.)
during recursion, and thus saving time by avoiding the need
to rebuild subtrees from scratch. The number of features
considered by each Random Forest tree is uniformly and
randomly chosenwithin range (⌊

√
𝑛𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠⌋+1, 𝑛𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠],

where 𝑛𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠 is the number of features in the dataset.
The features considered by each ensemble tree are ran-
domly and uniformly selected without replacement when
created and will not change in subsequent updates. Further,
every node inside the same ensemble tree considers the
same features.

• To increase the diversity in the forest,𝑈𝑝𝑑𝑎𝑡𝑒𝑆𝑢𝑏𝑇𝑟𝑒𝑒𝑅𝐹 (.)
function will randomly and uniformly discard old data with-
out replacement, instead of discarding data based on time
of insertion.

• To decrease the correlation between trees and increase
the diversity in the forest, we give the user the option to
choose the Leveraging Bagging [2] strategy to the data
arriving at each Random Forest tree. The size of the data
after bagging is𝑊 times the size of original data, where𝑊
is a random number with a expected value of 6, generated
by a 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜆 = 6) distribution. To avoid the performance
hit resulting from too many copies of the data, we never
allow𝑊 to be larger than 10. Each data item in the expanded
data is randomly and uniformly selected from the original
data with replacement. We apply bagging to each decision
tree inside the random forest.

3.4 Discard Poorly Performing Trees
To discard the trees with features that perform poorly after con-
cept drift, we will call the 𝐷𝑖𝑠𝑐𝑎𝑟𝑑 (.) function (Algorithm 5) when
𝑛𝑒𝑤𝐴𝑐𝑐 is significantly less than 𝑙𝑎𝑠𝑡𝐴𝑐𝑐 . As in algorithm 3, we will
subtract the accuracy of random guessing 𝑔𝑢𝑒𝑠𝑠𝐴𝑐𝑐 from 𝑛𝑒𝑤𝐴𝑐𝑐
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and 𝑜𝑙𝑑𝐴𝑐𝑐 to show the improvement of the model with respect to
random guessing. Significance is based on a 𝑝 −𝑣𝑎𝑙𝑢𝑒 test: the accu-
racy of the forest has changed with a 𝑝 − 𝑣𝑎𝑙𝑢𝑒 < 𝑡𝑇ℎ𝑟𝑒𝑠ℎ based on
a 2 sample t-test. The variable 𝑡𝑇ℎ𝑟𝑒𝑠ℎ is a hyper-parameter that
will be tuned in section 4.2.

To detect slight but continuous decreases in accuracy, we will
update 𝑙𝑎𝑠𝑡𝐴𝑐𝑐 and 𝑙𝑎𝑠𝑡𝑆𝑖𝑧𝑒 by averaging them with 𝑛𝑒𝑤𝐴𝑐𝑐 and
𝑠𝑖𝑧𝑒 (𝑋 ) when we observe an insignificant change in accuracy. In
other cases, when the change in accuracy is significant, we will
replace 𝑙𝑎𝑠𝑡𝐴𝑐𝑐 and 𝑙𝑎𝑠𝑡𝑆𝑖𝑧𝑒 with 𝑛𝑒𝑤𝐴𝑐𝑐 and 𝑠𝑖𝑧𝑒 (𝑋 ) after the
𝐷𝑖𝑠𝑐𝑎𝑟𝑑 (.) function is called.

The 𝐷𝑖𝑠𝑐𝑎𝑟𝑑 (.) function (Algorithm 5) removes
((𝑛𝑒𝑤𝐴𝑐𝑐 − 𝑙𝑎𝑠𝑡𝐴𝑐𝑐)/𝑙𝑎𝑠𝑡𝐴𝑐𝑐) ∗𝑛𝑇𝑟𝑒𝑒 Random Forest trees having
the least accuracy when evaluated on the new data. The discarded
trees are replaced with new decision trees. Each new tree will take
all the data from the tree it replaced, but the tree will be rebuilt,
the 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑃𝑎𝑟𝑎𝑚𝑠 for that tree will be re-initialized, and the con-
sidered features will be re-selected for that tree. After building
the new tree, the algorithm will test the tree on the latest data
to calculate 𝑛𝑇𝑟𝑒𝑒.𝑙𝑎𝑠𝑡𝐴𝑐𝑐 and 𝑛𝑒𝑤𝑇𝑟𝑒𝑒.𝑙𝑎𝑠𝑡𝑆𝑖𝑧𝑒 . In this way, new
trees adapt their 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑃𝑎𝑟𝑎𝑚𝑠.𝑟𝑆𝑖𝑧𝑒 and 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑃𝑎𝑟𝑎𝑚𝑠.𝑖𝑅𝑎𝑡𝑒

with the newly arriving data.

4 TUNING THE VALUES OF THE
HYPERPARAMETERS

Decision trees and random forests have six hyperparameters to set,
which are 𝐺 (·), 𝐸 (·), 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑃𝑎𝑟𝑎𝑚𝑠.𝑤𝑎𝑟𝑚𝑆𝑖𝑧𝑒 , 𝑡𝑇ℎ𝑟𝑒𝑠ℎ, 𝑛𝑇𝑟𝑒𝑒 ,
and 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑃𝑎𝑟𝑎𝑚𝑠.𝑖𝑅𝑎𝑡𝑒 . To find the best values for these hyper-
parameters, we generated 18 datasets with different intensity of
concept drifts, number of concept drifts, and Gaussian noise, using
the generator inspired by Harvard Dataverse [14].

After testing on the 18 new datasets, we find that some hyper-
parameters have optimal values (with respect to accuracy) that
apply to all datasets. Others have values that vary depending on
the dataset but can be learned.

Here are the ones whose optimal values can be fixed in advance.
• The evaluation function 𝐺 (·) can be a Gini Impurity[6]

score or an entropy reduction coefficient. Which one is
chosen doesn’t make a material difference, so we set 𝐺 (·)
to entropy reduction coefficient for all datasets.

• The maximum tree height (𝑚𝑎𝑥𝐻𝑒𝑖𝑔ℎ𝑡 ) is adaptively set
based on the methods in section 3.2 to log base 2 of
𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑃𝑎𝑟𝑎𝑚𝑠.𝑟𝑆𝑖𝑧𝑒 . Applying other stopping criteria does
not materially affect the accuracy. For that reason, we ig-
nore other stopping criteria.

• Tomitigate the inaccuracies of a cold startup, the model will
not discard any data in Cold Startup mode. To leave Cold
Startup mode, the accuracy should be better than random
guessing on the last 50% of data, when
𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑃𝑎𝑟𝑎𝑚𝑠.𝑟𝑆𝑖𝑧𝑒 is at least 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑃𝑎𝑟𝑎𝑚𝑠.𝑤𝑎𝑟𝑚𝑆𝑖𝑧𝑒 .
𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑃𝑎𝑟𝑎𝑚𝑠.𝑤𝑎𝑟𝑚𝑆𝑖𝑧𝑒 adapts if it is too small (line 9 in
algorithm 3), so we will set its initial value to 64 data items.

The parameters that must be learned through training are
𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑃𝑎𝑟𝑎𝑚𝑠.𝑖𝑅𝑎𝑡𝑒 , 𝑡𝑇ℎ𝑟𝑒𝑠ℎ, and 𝑛𝑇𝑟𝑒𝑒 . These are described in
section 3

Algorithm 4: UpdateForest
input : (𝑋 , 𝑌 ), incoming training data for current node

𝑛𝑇𝑟𝑒𝑒 , the number of decision trees that are
actively updated

𝑓 𝑖𝑟𝑠𝑡𝐶𝑎𝑙𝑙 , whether UpdateForest is called for the
first time

𝑡𝑇ℎ𝑟𝑒𝑠ℎ, the threshold for discarding trees
𝐸 (.), the stopping criteria, returns boolean
𝐺 (.), a function to score the fitness of a feature for

splitting
global :𝑐𝑢𝑟𝑟𝑒𝑛𝑡 .𝑡𝑟𝑒𝑒𝑠 the list of decision trees that are

actively updated
𝑐𝑢𝑟𝑟𝑒𝑛𝑡 .(𝑙𝑎𝑠𝑡𝐴𝑐𝑐, 𝑙𝑎𝑠𝑡𝑆𝑖𝑧𝑒) the accuracy and data

size of testing of of previous update
𝑐𝑢𝑟𝑟𝑒𝑛𝑡 .𝑎𝑙𝑙𝑃𝑎𝑟𝑎𝑚𝑠 , the parameters that will be

updated for each tree in 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 .𝑡𝑟𝑒𝑒𝑠
1 begin
2 𝑛𝑒𝑤𝐴𝑐𝑐 ←

𝑓 𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝐶𝑜𝑟𝑟𝑒𝑐𝑡 (𝑐𝑢𝑟𝑟𝑒𝑛𝑡, 𝑋,𝑌 ) − 1/𝑛𝐶𝑙𝑎𝑠𝑠𝑒𝑠 ;
3 // 𝑛𝐶𝑙𝑎𝑠𝑠𝑒𝑠 is the number of classes in 𝑌
4 𝑙𝑎𝑠𝑡𝐴𝑐𝑐 ← 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 .𝑙𝑎𝑠𝑡𝐴𝑐𝑐;
5 if 2𝑆𝑎𝑚𝑝𝑙𝑒_𝑡_𝑡𝑒𝑠𝑡 (newAcc, lastAcc, size(X),

current.lastSize)>tThresh then
6 if 𝑛𝑒𝑤𝐴𝑐𝑐 < 𝑙𝑎𝑠𝑡𝐴𝑐𝑐 then
7 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 .𝑡𝑟𝑒𝑒𝑠, 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 .𝑎𝑙𝑙𝑃𝑎𝑟𝑎𝑚𝑠 ←

𝐷𝑖𝑠𝑐𝑎𝑟𝑑 (((newAcc-lastAcc)/lastAcc)*nTree, X,
Y, current.trees, current.allParams, E(.), G(.));

8 end
9 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 .𝑙𝑎𝑠𝑡𝐴𝑐𝑐 ← 𝑛𝑒𝑤𝐴𝑐𝑐;

10 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 .𝑙𝑎𝑠𝑡𝑆𝑖𝑧𝑒 ← 𝑠𝑖𝑧𝑒 (𝑋);
11 else
12 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 .𝑙𝑎𝑠𝑡𝐴𝑐𝑐 ←

(𝑙𝑎𝑠𝑡𝐴𝑐𝑐∗𝑐𝑢𝑟𝑟𝑒𝑛𝑡 .𝑙𝑎𝑠𝑡𝑆𝑖𝑧𝑒+𝑛𝑒𝑤𝐴𝑐𝑐∗𝑠𝑖𝑧𝑒 (𝑋 ))
𝑐𝑢𝑟𝑟𝑒𝑛𝑡 .𝑙𝑎𝑠𝑡𝑆𝑖𝑧𝑒+𝑠𝑖𝑧𝑒 (𝑋 ) ;

13 // lastAcc is updated based on a weighted average,
which is weighted by the size of the new data
compared to the previous data.

14 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 .𝑙𝑎𝑠𝑡𝑆𝑖𝑧𝑒 ← 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 .𝑙𝑎𝑠𝑡𝑆𝑖𝑧𝑒 + 𝑠𝑖𝑧𝑒 (𝑋 );
15 end
16 if 𝑓 𝑖𝑟𝑠𝑡𝐶𝑎𝑙𝑙 then
17 for each 𝑡𝑟𝑒𝑒 in 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 .𝑡𝑟𝑒𝑒𝑠 do
18 𝑚𝑎𝑥𝐻𝑒𝑖𝑔ℎ𝑡 ← 𝑙𝑜𝑔2(𝑠𝑖𝑧𝑒 (𝑋 ));
19 𝐵𝑢𝑖𝑙𝑑𝑆𝑢𝑏𝑇𝑟𝑒𝑒𝑅𝐹 (Bagging(X, Y), tree,

E(maxHeight), G(.));
20 end
21 else
22 for each 𝑡𝑟𝑒𝑒 in 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 .𝑡𝑟𝑒𝑒𝑠 do
23 𝑏𝑎𝑔𝑔𝑒𝑑𝑋,𝑏𝑎𝑔𝑔𝑒𝑑𝑌 ← 𝐵𝑎𝑔𝑔𝑖𝑛𝑔(𝑋,𝑌 );
24 𝑚𝑎𝑥𝐻𝑒𝑖𝑔ℎ𝑡, 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 .𝑎𝑙𝑙𝑃𝑎𝑟𝑎𝑚𝑠 [𝑡𝑟𝑒𝑒] ←

𝐴𝑑𝑎𝑝𝑡𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 (baggedX, baggedY,
current.allParams[tree]);

25 𝑡𝑟𝑒𝑒 ← 𝑈𝑝𝑑𝑎𝑡𝑒𝑆𝑢𝑏𝑇𝑟𝑒𝑒𝑅𝐹 (baggedX, baggedY,
tree, E(maxHeight), G(.), tree.(X, Y, gRecord,
ranges, label), current.allParams[tree].rSize);

26 end
27 end
28 end6



Algorithm 5: Discard
input :𝑛𝐷𝑖𝑠𝑐𝑎𝑟𝑑 , the number of trees that will be discarded

(𝑋 , 𝑌 ), incoming training data for current node
𝐸 (·), the stopping criteria, returns boolean
𝐺 (·), a function to score the fitness of a feature for

splitting
global :𝑐𝑢𝑟𝑟𝑒𝑛𝑡 .𝑡𝑟𝑒𝑒𝑠 , the list of decision trees that are

actively updated
𝑐𝑢𝑟𝑟𝑒𝑛𝑡 .𝑎𝑙𝑙𝑃𝑎𝑟𝑎𝑚𝑠 , the parameters that will be

updated for each tree in 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 .𝑡𝑟𝑒𝑒𝑠
1 begin
2 𝑑𝑖𝑠𝑐𝑎𝑟𝑑𝑇𝑟𝑒𝑒 ← 𝑛𝐷𝑖𝑠𝑐𝑎𝑟𝑑 trees in 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 .𝑡𝑟𝑒𝑒𝑠 having

the smallest accuracy (fractionCorrect);
3 for each 𝑡𝑟𝑒𝑒 in 𝑑𝑖𝑠𝑐𝑎𝑟𝑑𝑇𝑟𝑒𝑒 do
4 𝑡𝑟𝑒𝑒𝑁𝑒𝑤 ← create a new Tree;
5 𝑡𝑟𝑒𝑒𝑁𝑒𝑤 ←

𝐵𝑢𝑖𝑙𝑑𝑆𝑢𝑏𝑇𝑟𝑒𝑒𝑅𝐹 (𝑡𝑟𝑒𝑒.𝑋, 𝑡𝑟𝑒𝑒.𝑌 , 𝑡𝑟𝑒𝑒𝑁𝑒𝑤, 𝐸 (.),𝐺 (, );

6 Initialize 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 .𝑎𝑙𝑙𝑃𝑎𝑟𝑎𝑚𝑠 [𝑡𝑟𝑒𝑒𝑁𝑒𝑤];
7 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 .𝑎𝑙𝑙𝑃𝑎𝑟𝑎𝑚𝑠 [𝑡𝑟𝑒𝑒𝑁𝑒𝑤] ←

𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒 (𝑡𝑟𝑒𝑒𝑁𝑒𝑤, 𝑡𝑟𝑒𝑒.𝑋, 𝑡𝑟𝑒𝑒.𝑌 );
8 replace tree with treeNew in 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 .𝑡𝑟𝑒𝑒𝑠;
9 end

10 end

Figure 1: 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑃𝑎𝑟𝑎𝑚𝑠.𝑖𝑅𝑎𝑡𝑒 against Accuracy:
𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑃𝑎𝑟𝑎𝑚𝑠.𝑖𝑅𝑎𝑡𝑒 = 0.3 usually results in a high ac-
curacy

4.1 Tuning Increase Rate
The adaptation strategy in section 3.2 need an initial value for
parameter 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑃𝑎𝑟𝑎𝑚𝑠.𝑖𝑅𝑎𝑡𝑒 which influences the increase rate
of 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑃𝑎𝑟𝑎𝑚𝑠.𝑟𝑆𝑖𝑧𝑒 . Toomuch data will be retained if the initial
𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑃𝑎𝑟𝑎𝑚𝑠.𝑖𝑅𝑎𝑡𝑒 is large, but cold start will last too long if
𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑃𝑎𝑟𝑎𝑚𝑠.𝑖𝑅𝑎𝑡𝑒 is too small.

To find the best initial 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑃𝑎𝑟𝑎𝑚𝑠.𝑖𝑅𝑎𝑡𝑒 , we created 18 simu-
lated datasets. Each dataset contains 50, 000 data items labeled with
0, 1 without noise. Each item is characterized by 10 binary features.
Each dataset is labeled with (𝐶, 𝐼 ), where𝐶 means that it has (𝐶−1)
uniformly distributed concept drifts, and 𝐼 is the intensity of the
concept drift, while a mild concept drift will drift one feature, a
medium concept drift will drift 3 features, and a drastic concept
drift will drift 5 features. Also, for each dataset, we have one ver-
sion without Gaussian Noise, and the other version with Gaussian
Noise (𝜆 = 0, 𝑠𝑡𝑑 = 1, unit is the number of features). We tested the
Forgetful Decision Tree with different initial 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑃𝑎𝑟𝑎𝑚𝑠.𝑖𝑅𝑎𝑡𝑒

values on these synthetic datasets, while other hyperparameter
values were fixed in advance as in section 4.

From Figure 1, we observe that the Foregetful Decision Tree does
well when 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑃𝑎𝑟𝑎𝑚𝑠.𝑖𝑅𝑎𝑡𝑒 = 0.3 or 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑃𝑎𝑟𝑎𝑚𝑠.𝑖𝑅𝑎𝑡𝑒 =

0.4 initially. We will use 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑃𝑎𝑟𝑎𝑚𝑠.𝑖𝑅𝑎𝑡𝑒 = 0.3 as our initial
setting and use it in the experiments of section 5 for all our algo-
rithms, because most simulated datasets have higher accuracy at
𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑃𝑎𝑟𝑎𝑚𝑠.𝑖𝑅𝑎𝑡𝑒 = 0.3 than at 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑃𝑎𝑟𝑎𝑚𝑠.𝑖𝑅𝑎𝑡𝑒 = 0.4.

Also, we observe a significant increase of
𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑃𝑎𝑟𝑎𝑚𝑠.𝑖𝑅𝑎𝑡𝑒 after each concept drift. This implies that new
data accumulates after concept drift. However, the hyperparameter
𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑃𝑎𝑟𝑎𝑚𝑠.𝑖𝑅𝑎𝑡𝑒 will decrease to a low level after the accuracy
starts to increase, thus avoiding the retention of too much data.

4.2 Tuning Discard Threshold
To find the best 𝑡𝑇ℎ𝑟𝑒𝑠ℎ, we tested the Forgetful Random Forest
with different 𝑡𝑇ℎ𝑟𝑒𝑠ℎ values on the synthetic datasets of section 4.1.
Other hyperparameter values were fixed in advance as in section 4.
To measure statistical stability in the face of the noise caused by the
random setting of the initial seeds, we tested the random forests
six times with different seeds and record the average values. From
Figure 2 and Figure 3, we observe that all datasets enjoy a good
accuracy when 𝑡𝑇ℎ𝑟𝑒𝑠ℎ = 0.05, both with bagging and without
bagging.

4.3 Tuning Number of Trees
To find the best 𝑛𝑇𝑟𝑒𝑒 value, we again use the simulated datasets of
section 4.1. We tested Forgetful Random Forest with different 𝑛𝑇𝑟𝑒𝑒
values on these synthetic datasets, while the other hyperparameter
values were fixed in advance as in section 4. To measure statistical
stability in the face of the noise caused by randomization caused
by the setting of the initial seeds, we tested the random forests six
times with different seeds and recorded the average values. From
Figure 4 and Figure 5, we observe that the accuracy of all datasets
stops growing after 𝑛𝑇𝑟𝑒𝑒 > 20 for both with bagging and without
bagging, so we will set 𝑛𝑇𝑟𝑒𝑒 = 20.
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Figure 2: 𝑡𝑇ℎ𝑟𝑒𝑠ℎ against Accuracywithout Bagging: 𝑡𝑇ℎ𝑟𝑒𝑠ℎ =

0.05 usually results in a high accuracy

Figure 3: 𝑡𝑇ℎ𝑟𝑒𝑠ℎ against Accuracy with Bagging: 𝑡𝑇ℎ𝑟𝑒𝑠ℎ =

0.05 usually results in a high accuracy

Figure 4: 𝑛𝑇𝑟𝑒𝑒 against Accuracy without bagging: The accu-
racy stops increasing after 𝑛𝑇𝑟𝑒𝑒 >= 20

Figure 5: 𝑛𝑇𝑟𝑒𝑒 against Accuracy with bagging: The accuracy
stops increasing after 𝑛𝑇𝑟𝑒𝑒 >= 20

8



4.4 Main Decision Tree Algorithm
The Forgetful Decision Tree main routine (algorithm 6) is called
initially and then each time a new batch (an incremental batch)
of data is received. The routine will make predictions with the
tree before the batch and then update the batch. The algorithm 6
describes only the update part. The prediction part is what would
be done by any Decision Tree. Accuracy results are recorded only
after the accuracy flattens out, which means the accuracy changes
10% or less between the last 500 data items and the previous 500
data items.

Algorithm 6: ForgetfulDecisionTree
input :

𝑑𝑎𝑡𝑎𝑆𝑡𝑟𝑒𝑎𝑚, the stream of data
1 begin
2 𝐸 (.) ← 𝑀𝑎𝑥𝑖𝑚𝑢𝑚𝑇𝑟𝑒𝑒𝐻𝑒𝑖𝑔ℎ𝑡 (.) ;
3 𝐺 (.) ← 𝐸𝑛𝑡𝑟𝑜𝑝𝑦 (.);
4 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑃𝑎𝑟𝑎𝑚𝑠.𝑖𝑅𝑎𝑡𝑒 ← 0.3;
5 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑃𝑎𝑟𝑎𝑚𝑠.𝑐𝑜𝑙𝑑𝑆𝑡𝑎𝑟𝑡𝑢𝑝 ← 𝑇𝑟𝑢𝑒;
6 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑃𝑎𝑟𝑎𝑚𝑠.𝑤𝑎𝑟𝑚𝑆𝑖𝑧𝑒 ← 64 data items;
7 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑃𝑎𝑟𝑎𝑚𝑠.(𝑙𝑎𝑠𝑡𝐴𝑐𝑐, 𝑙𝑎𝑠𝑡𝑆𝑖𝑧𝑒) ← (0, 0);
8 𝑟𝑜𝑜𝑡 ← new decision tree root node;
9 𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝐹𝑙𝑎𝑔← 𝑇𝑟𝑢𝑒;

10 while receiving new batch 𝑋,𝑌 from 𝑑𝑎𝑡𝑎𝑆𝑡𝑟𝑒𝑎𝑚 do
11 if 𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝐹𝑙𝑎𝑔 then
12 𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝐹𝑙𝑎𝑔← 𝐹𝑎𝑙𝑠𝑒;
13 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑃𝑎𝑟𝑎𝑚𝑠.𝑟𝑆𝑖𝑧𝑒 ← 𝑠𝑖𝑧𝑒 (𝑋 );
14 𝑚𝑎𝑥𝐻𝑒𝑖𝑔ℎ𝑡 ← 𝑙𝑜𝑔2(𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑃𝑎𝑟𝑎𝑚𝑠.𝑟𝑆𝑖𝑧𝑒);
15 𝑟𝑜𝑜𝑡 ←

𝐵𝑢𝑖𝑙𝑑𝑆𝑢𝑏𝑇𝑟𝑒𝑒 (𝑋,𝑌, 𝑟𝑜𝑜𝑡, 𝐸 (𝑚𝑎𝑥𝐻𝑒𝑖𝑔ℎ𝑡),𝐺 (.));
16 else
17 𝑚𝑎𝑥𝐻𝑒𝑖𝑔ℎ𝑡, 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑃𝑎𝑟𝑎𝑚𝑠 ←

𝐴𝑑𝑎𝑝𝑡𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 (X, Y, currentParams.(iRate,
rSize, warmSize, coldStartup, lastAcc, lastSize);

18 𝑟𝑜𝑜𝑡 ← 𝑈𝑝𝑑𝑎𝑡𝑒𝑆𝑢𝑏𝑇𝑟𝑒𝑒 (X, Y, root,
E(maxHeight), G(.), root.(X, Y, gRecord, ranges,
label), currentParams.rSize))

19 end
20 end
21 end

4.5 Main Random Forest Algorithm

The Forgetful Random Forest main routine (algorithm 7) is called
initially and then each time an incremental batch of data is received.
The routine will make predictions with the Random Forest before
the batch and then update the Random Forest. The algorithm 7
describes only the update part. The prediction part is what would
be done by any Random Forest. Accuracy results will apply after
the accuracy flattens out, which means the accuracy changes 10%
or less between the last 500 data items and the previous 500 data
items.

5 EXPERIMENTS

This section compares the following algorithms: Forgetful Decision
Tree, Forgetful Random Forest with bagging, Forgetful Random
Forest without bagging, Hoeffding Tree [21] [9], Hoeffding Adap-
tive Tree[1], iSOUP Tree[16], train once, and Adaptive Random
Forest[7]. The forgetful algorithms from section 3 use the hyperpa-
rameter settings from section 4 on both real and simulated datasets
produced by others.

We measure time consumption, the accuracy and, where appro-
priate, the F1-score.

Because we have tuned the forgetful data structures, we have
also tuned the state-of-the-art algorithms on the same generated
data sets of section 4.The following settings yield the best accuracy
for the state-of-the-art algorithms

Algorithm 7: ForgetfulRandomForest
input : 𝑓 𝑒𝑎𝑡𝑢𝑟𝑒𝑠 , all features in data

𝑑𝑎𝑡𝑎𝑆𝑡𝑟𝑒𝑎𝑚, the stream of data for training
1 begin
2 𝐸 (.) ← 𝑀𝑎𝑥𝑖𝑚𝑢𝑚𝑇𝑟𝑒𝑒𝐻𝑒𝑖𝑔ℎ𝑡 (.) ;
3 𝐺 (.) ← 𝐸𝑛𝑡𝑟𝑜𝑝𝑦 (.);
4 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 .𝑙𝑎𝑠𝑡𝐴𝑐𝑐 ← 0;
5 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 .𝑙𝑎𝑠𝑡𝑆𝑖𝑧𝑒 ← 0;
6 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 .𝑡𝑟𝑒𝑒𝑠 ← 𝑛𝑇𝑟𝑒𝑒 new decision trees;
7 𝑛𝑇𝑟𝑒𝑒 ← 20;
8 𝑡𝑇ℎ𝑟𝑒𝑠ℎ ← 0.05 for each 𝑡𝑟𝑒𝑒 in 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 .𝑡𝑟𝑒𝑒𝑠 do
9 //Initialize 𝑐𝑜𝑛𝑠𝑖𝑑𝑒𝑟 of each 𝑡𝑟𝑒𝑒

10 𝑛𝐶𝑜𝑛𝑠𝑖𝑑𝑒𝑟 ← single value from uniform distribution
random variable between (⌊

√︁
𝑠𝑖𝑧𝑒 (𝑓 𝑒𝑎𝑡𝑢𝑟𝑒𝑠)⌋ + 1

and 𝑠𝑖𝑧𝑒 (𝑓 𝑒𝑎𝑡𝑢𝑟𝑒𝑠)] ;
11 𝑎𝑙𝑙𝐶𝑜𝑛𝑠𝑖𝑑𝑒𝑟 [𝑡𝑟𝑒𝑒] ← uniformly and randomly

select 𝑛𝐶𝑜𝑛𝑠𝑖𝑑𝑒𝑟 features from 𝑓 𝑒𝑎𝑡𝑢𝑟𝑒𝑠 without
replacement;

12 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 .𝑎𝑙𝑙𝑃𝑎𝑟𝑎𝑚𝑠 [𝑡𝑟𝑒𝑒] .𝑖𝑅𝑎𝑡𝑒 ← 0.3;
13 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 .𝑎𝑙𝑙𝑃𝑎𝑟𝑎𝑚𝑠 [𝑡𝑟𝑒𝑒] .𝑐𝑜𝑙𝑑𝑆𝑡𝑎𝑟𝑡𝑢𝑝 ← 𝑇𝑟𝑢𝑒;
14 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 .𝑎𝑙𝑙𝑃𝑎𝑟𝑎𝑚𝑠 [𝑡𝑟𝑒𝑒] .𝑤𝑎𝑟𝑚𝑆𝑖𝑧𝑒 ← 64 data

items;
15 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 .𝑎𝑙𝑙𝑃𝑎𝑟𝑎𝑚𝑠 [𝑡𝑟𝑒𝑒] .(𝑙𝑎𝑠𝑡𝐴𝑐𝑐, 𝑙𝑎𝑠𝑡𝑆𝑖𝑧𝑒) ←

(0, 0)
16 end
17 𝑓 𝑖𝑟𝑠𝑡𝐶𝑎𝑙𝑙 ← 𝑇𝑟𝑢𝑒;
18 while receiving new batch 𝑋,𝑌 from 𝑑𝑎𝑡𝑎𝑆𝑡𝑟𝑒𝑎𝑚 do
19 𝑓 𝑖𝑟𝑠𝑡𝐶𝑎𝑙𝑙 ← 𝐹𝑎𝑙𝑠𝑒;
20 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 ← 𝑈𝑝𝑑𝑎𝑡𝑒𝐹𝑜𝑟𝑒𝑠𝑡 (X, Y, nTree, firstCall,

tThresh, current.(lastAcc, lastSize, trees),
allConsider,current.allParams, E(.), G(.));

21 end
22 end

• Previous papers ([21] and [9]) provide two different configu-
rations for the Hoeffding Tree. The configuration from [21]
usually has the highest accuracy, so we will use it in the fol-
lowing experiment: 𝑠𝑝𝑙𝑖𝑡_𝑐𝑜𝑛𝑓 𝑖𝑑𝑒𝑛𝑐𝑒 = 10−7,𝑔𝑟𝑎𝑐𝑒_𝑝𝑒𝑟𝑖𝑜𝑑 =
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200, and 𝑡𝑖𝑒_𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 = 0.05. Because the traditional Ho-
effding Tree cannot deal with concept drift, so we set
𝑙𝑒𝑎𝑓 _𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 = 𝑁𝑎𝑖𝑣𝑒𝐵𝑎𝑦𝑒𝑠𝐴𝑑𝑎𝑝𝑡𝑖𝑣𝑒 to allow themodel
to adapt when concept drift happens.

• The designer of Hoeffding Adaptive Tree suggests six ver-
sions of configuration of theHoeffdingAdaptive Tree, which
are HAT-INC, HATEWMA, HAT-ADWIN, HAT-INC NB,
HATEWMA NB, and HAT-ADWIN NB. HAT-ADWIN NB
has the best accuracy, and we will use it in the follow-
ing experiment. The configuration is 𝑙𝑒𝑎𝑓 _𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 =

𝑁𝑎𝑖𝑣𝑒𝐵𝑎𝑦𝑒𝑠 , 𝑠𝑝𝑙𝑖𝑡_𝑐𝑜𝑛𝑓 𝑖𝑑𝑒𝑛𝑐𝑒 = 0.0001, 𝑔𝑟𝑎𝑐𝑒_𝑝𝑒𝑟𝑖𝑜𝑑 =

200, and 𝑡𝑖𝑒_𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 = 0.05.
• The designer provides only one configuration for iSOUP-
Tree [16], so we will use it in the following experiment. The
configuration is 𝑙𝑒𝑎𝑓 _𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 = 𝑎𝑑𝑎𝑝𝑡𝑖𝑣𝑒 ,
𝑠𝑝𝑙𝑖𝑡_𝑐𝑜𝑛𝑓 𝑖𝑑𝑒𝑛𝑐𝑒 = 0.0001, 𝑔𝑟𝑎𝑐𝑒_𝑝𝑒𝑟𝑖𝑜𝑑 = 200, and
𝑡𝑖𝑒_𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 = 0.05.
• For the train-once model, we will train the model only once

with all of the arrived data before starting to apply accuracy
result, and the model will never be updated again. In this
case, we will use non-incremental decision tree, which is
CART algorithm [13], to fit the model. We use the setting
with the best accuracy, which is 𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑜𝑛 = 𝑔𝑖𝑛𝑖 , and no
other restrictions.

• The designer of Adaptive Random Forest provided six vari-
ant configurations of Adaptive Random Forest [7]: the vari-
ants𝐴𝑅𝐹𝑚𝑜𝑑𝑒𝑟𝑎𝑡𝑒 ,𝐴𝑅𝐹𝑓 𝑎𝑠𝑡 ,𝐴𝑅𝐹𝑃𝐻𝑇 ,𝐴𝑅𝐹𝑛𝑜𝐵𝑘𝑔 ,𝐴𝑅𝐹𝑠𝑡𝑑𝑅𝐹 ,
and 𝐴𝑅𝐹𝑚𝑎𝑗 . 𝐴𝑅𝐹𝑓 𝑎𝑠𝑡 has the highest accuracy in most
cases that we tested, so we will use that configuration:
𝛿𝑤 = 0.01, 𝛿𝑑 = 0.001, and 𝑙𝑒𝑎𝑟𝑛𝑒𝑟𝑠 = 100.

5.1 Hyperparameter Settings for Forgetful Data
Structures

The previous sections gave us the following hyperparameters set-
tings:

• 𝐺 (¤) is entropy reduction for all of the Forgetful Random
Forests and the Forgetful Decision Tree.

• 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑃𝑎𝑟𝑎𝑚𝑠.𝑤𝑎𝑟𝑚𝑆𝑖𝑧𝑒 should be initially small, because
it can be adaptively increased. We initially set it to 64 data
items.

• Following the tuning of section 4.1, we will initialize
𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑃𝑎𝑟𝑎𝑚𝑠.𝑖𝑅𝑎𝑡𝑒 to 0.3.
• 𝑡𝑇ℎ𝑟𝑒𝑠ℎ defines the threshold for discarding trees inside a

Random Forest. Following the tuning of section 4.2, we will
set 𝑡𝑇ℎ𝑟𝑒𝑠ℎ = 0.05.

• 𝑛𝑇𝑟𝑒𝑒 is the number of trees inside the Forgetful Random
Forest. Following the tuning of section 4.3, we set it to 20
for both versions of the Forgetful Random Forests.

5.2 Metrics
Beside accuracy, we also use precision, recall, and F1-score to
evaluate our methods. Precision and recall are appropriate to prob-
lems where there is a class of interest and the question is which
percentage of predictions of that class are correct (precision) and
howmany instances of that class are predicted (recall). This is appro-
priate for the phishing application where the question is whether

the website is a phishing website. Accuracy is more appropriate
in all other applications. For example, in the electricity datasets,
price up and price down are both classes of interest. Therefore, we
present precision, recall, and the F1-score for Phishing only. We
use the following formula based on the confusion matrix for the
following tests.

• 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
|𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 |+ |𝑇𝑟𝑢𝑒𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 |

𝑆𝑖𝑧𝑒 (𝑡𝑒𝑠𝑡−𝑠𝑒𝑡 )
• 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =

|𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 |
|𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 |+ |𝐹𝑎𝑙𝑠𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 |

• 𝑟𝑒𝑐𝑎𝑙𝑙 =
|𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 |

|𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 |+ |𝐹𝑎𝑙𝑠𝑒𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 |
• 𝐹1−𝑠𝑐𝑜𝑟𝑒 = |2∗𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 |

2∗|𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 |+ |𝐹𝑎𝑙𝑠𝑒𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 |+ |𝐹𝑎𝑙𝑠𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 |
In contrast to most static labeled machine learning tasks, we

don’t partition the data into a training set and a test set. Instead,
when each batch of data arrives, we measure the accuracy and
F1-score of the predictions on that incremental set, before we use
it to update the models. We start measuring accuracy and F1-score
after the accuracy of Forgetful Decision Tree flattens out, in order
to avoid the inaccuracies during start-up. That point is different for
each dataset as described in section 5.3, but all algorithms will start
measuring the accuracy and F1-score at same point for the same
dataset.

5.3 Datasets
We use four real datasets and two synthetic datasets to test the
performance of our forgetful methods against the state-of-the-art
incremental algorithms.

• Forest Cover Type (ForestCover) [11] dataset captures im-
ages of forests for each 30 x 30 meter cell determined from
the US Forest Service (USFS) Region 2 Resource Information
System (RIS) data. Each increment consists of 400 image ob-
servations. The task is to infer the forest type. This dataset
suffers from concept drift because later increments have
different mappings from input image to forest type than
earlier ones. For this dataset, the accuracy first increases
and then flattens out after the first 24, 000 data items have
been observed, out of 581, 102 data items.

• The Electricity [15] dataset describes the price and demand
of electricity. The task is to forecast the price trend in the
next 30 minutes. Each increment consists of data from one
day. This data suffers from concept drift because of market
and other external influences. For this dataset, the accuracy
never stabilizes, so we start measuring accuracy after the
first increment, which is after the first 49 data items have
arrived, out of 36, 407 data items.

• Phishing [20] contains 11,055 web pages accessed over time,
some of which are malicious. The task is to predict which
pages are malicious. Each increment consists of 100 pages.
The tactics of Phishing purveyors get more sophisticated
over time, so this dataset suffers from concept drift. For this
dataset, the accuracy flattens out after the first 500 data
items have arrived.

• Power Supply [22] contains three years of power supply
records of an Italian electrical utility, comprising 29, 928
data items. Each data item contains two features, which
are the amount of power supplied from the main grid and
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the amount of power transformed from other grids. Each
data item is labeled with the hour of the day when it was
collected (from 0 to 23). The task is to predict the label from
the power measurements. Concept drifts arise because of
season, weather, and the differences between working days
and weekends. Each increment consists of 100 data items,
and the accuracy flattens out after 1, 000 data items have
arrived.

• Two Synthetic datasets from [14]. Both are time-ordered
and are designed to suffer from concept drift over time. One,
called Gradual, has 41, 000 data points. Gradual is character-
ized by complete label changes that happen gradually over
1, 000 data points at three single points, and 10, 000 data
items between each concept drift. Another dataset, called
Abrupt, has 40, 000 data points. It undergoes complete label
changes at three single points, with 10, 000 data items be-
tween each concept drift. Each increment consists of 100
data points. Unlike the datasets that were used in section 4,
these datasets contains only four features, two of them are
binary classes without noise, and the other two are sparse
values generated by 𝑠𝑖𝑛(𝑥) and 𝑠𝑖𝑛−1 (𝑦), where 𝑥 and 𝑦

are the uniformly generated random numbers. For both
datasets, the accuracy flattens out after 1, 000 data items
have arrived.

Because the real datasets all contain categorical variables and
our methods don’t handle those directly, we modify the categorical
variables into their one-hot encodings using the OneHotEncoder of
sklearn [17]. For example, a categorical variable 𝑐𝑜𝑙𝑜𝑟 = {𝑅,𝐺, 𝐵}
will be transfered to three binary variables 𝑖𝑠𝑅 = {𝑇𝑟𝑢𝑒, 𝐹𝑎𝑙𝑠𝑒},
𝑖𝑠𝐺 = {𝑇𝑟𝑢𝑒, 𝐹𝑎𝑙𝑠𝑒}, and 𝑖𝑠𝐵 = {𝑇𝑟𝑢𝑒, 𝐹𝑎𝑙𝑠𝑒}. Also, all of the for-
getful methods in the following tests use only binary splits at each
node.

To measure statistical stability in the face of the noise caused by
the randomized setting of the initial seeds, we test all decision trees
and random forests six times with different seeds and record the
average values with a 95% confidence interval for time consumption,
accuracy, and F1-score.

The following experiments are performed on an Intel Xeon Plat-
inum 8268 24C 205W 2.9GHz Processor with 200 gigabytes of mem-
ory.

5.4 Quality and Time Performance of Forgetful
Decision Tree

Figure 6 compares the time consumption of different incremental
decision trees. For all datasets, the Forgetful Decision Tree takes at
least three times less time than the other incremental methods.

Figure 7 compares the accuracy of different incremental decision
trees and train-once model. For all datasets, the Forgetful Deci-
sion Tree is as accurate or more accurate than other incremental
methods.

Figure 8 compares the precision, recall, and F1-score of different
incremental decision trees. Because these metrics are not appropri-
ate for other datasets, we use them only on the phishing dataset.
The precision and recalls vary. For example, the Hoeffding Adaptive
Tree has a better precision but a worse recall than the Forgetful
Decision Tree, while the iSOUP tree has a better recall but a worse

Figure 6: Time Consumption of Decision Trees: Based on this
logarithmic scale, the Forgetful Decision Tree is at least three
times faster than the state-of-the-art incremental Decision
Trees.

Figure 7: Accuracy of Decision Trees: The Forgetful Decision
Tree is at least as accurate as the state-of-the-art incremental
Decision Trees(iSOUP-tree) and at most 9%more accurate.

Figure 8: Precision, Recall, and F1-score of Decision Trees:
While precision and recall results vary, the Forgetful Deci-
sion Tree has a similar F1-score to the other incremental
Decision Trees for the Phishing dataset (the only one where
F1-score is appropriate).

precision. Overall, the Forgetful Decision Tree has a similar F1-score
to the other incremental methods.
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Figure 9: Time Consumption of Random Forests: As can be
seen on this logarithmic scale, the Forgetful Random Forest
without bagging is at least 24 times faster than the Adaptive
Random Forest. The Forgetful Random Forest with bagging
is at least 2.5 times faster than Adaptive Random Forest.

Figure 10: Accuracy of Random Forests: Without bagging,
the Forgetful Random Forest is slightly less accurate (at most
2%) than the Adaptive Random Forest. With bagging, the For-
getful Random Forest has a similar accuracy to the Adaptive
Random Forest

Figure 11: F1-score of Random Forests: the Forgetful Random
Forest without bagging has a lower precision, recall, and F1-
score (by 0.02) compared to the Adaptive Random Forest. The
Forgetful Random Forest with bagging also has a F1-score (by
0.01) but a similar precision to the Adaptive Random Forest.

5.5 Quality and Time Performance of Forgetful
Random Forest

Figure 9 compares the time performance of maintaining different
random forests. From this figure, we observe that the Forgetful Ran-
dom Forest without bagging is the fastest algorithm. In particular,
it is at least 24 times faster than the Adaptive Random Forest. The
Forgetful Random Forest with bagging is about 10 times slower
than without bagging, but it’s still 2.5 times faster than the Adaptive
Random Forest.

Figure 10 compares the accuracy of different random forests.
From these figures, we observe that the Forgetful Random Forest
without bagging is slightly less accurate than the Adaptive Random
Forest (by at most 2%). By contrast, the Forgetful Random Forest
with bagging has a similar accuracy compared to the Adaptive
Random Forest. Sometimes the loss of accuracy might be worth it
if the streaming data enters at a high enough rate.

Figure 11 compares the precision, recall, and F1-score of training
different random forests when these evaluations are appropriate.
From these figures, we observe that the Forgetful Random Forest
without bagging has a lower precision, recall, and F1-score than the
Adaptive Random Forest (by at most 0.02). By contrast, the Forgetful
Random Forest with bagging has a similar precision but a lower
recall and F1-score (by at most 0.01) compared to the Adaptive
Random Forest.

6 CONCLUSION

Forgetful Decision Trees and Forgetful Random Forests constitute
simple new fast and accurate incremental data structure algorithms.
We have found that

• The Forgetful Decision Tree is at least three times faster
and at least as accurate as state-of-the-art incremental Deci-
sion Tree algorithms for a variety of concept drift datasets.
When the precision, recall, and F1-score are appropriate,
the Forgetful Decision Tree has a similar F1-score as state-
of-the-art incremental Decision Tree algorithms.

• The Forgetful Random Forest without bagging is at least
24 times faster than state-of-the-art incremental Random
Forest algorithms, but is less accurate by 2% or less.

• By contrast, the Forgetful Random Forest with bagging has
a similar accuracy to and is 2.5 times as fast as the Adaptive
Random Forest.

• At a conceptual level, our experiments show that it helps to
set parameter values based on changes in accuracy. We do
this for 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑃𝑎𝑟𝑎𝑚𝑠.𝑟𝑆𝑖𝑧𝑒 (retained data), 𝑚𝑎𝑥𝐻𝑒𝑖𝑔ℎ𝑡

(of decision trees), 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑃𝑎𝑟𝑎𝑚𝑠.𝑖𝑅𝑎𝑡𝑒 (increase rate of
𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑃𝑎𝑟𝑎𝑚𝑠.𝑟𝑆𝑖𝑧𝑒), and the number of features to con-
sider at each decision tree in the Forgetful Random Forests.

In summary, forgetful data structures speed up traditional de-
cision trees and random forests and help them adapt to concept
drift. Further, we have observed that bagging can increase accuracy
but at a substantial cost in time performance. The most pressing
question for future work is whether some other method can be
combined with forgetfulness to increase accuracy at less cost in a
streaming concept drift setting.
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