
Vexless: A Serverless Vector Data Management System Using
Cloud Functions
YONGYE SU, Purdue University, USA
YINQI SUN, Purdue University, USA
MINJIA ZHANG, University of Illinois Urbana-Champaign, USA
JIANGUO WANG, Purdue University, USA

Cloud functions, exemplified by AWS Lambda and Azure Functions, are emerging as a new computing par-
adigm in the cloud. They provide elastic, serverless, and low-cost cloud computing, making them highly
suitable for bursty and sparse workloads, which are quite common in practice. Thus, there is a new trend
in designing data systems that leverage cloud functions. In this paper, we focus on vector databases, which
have recently gained significant attention partly due to large language models. In particular, we investigate
how to use cloud functions to build high-performance and cost-efficient vector databases. This presents sig-
nificant challenges in terms of how to perform sharding, how to reduce communication overhead, and how
to minimize cold-start times.

In this paper, we introduce Vexless, the first vector database system optimized for cloud functions. We
present three optimizations to address the challenges. To perform sharding, we propose a global coordina-
tor (orchestrator) that assigns workloads to Cloud function instances based on their available hardware re-
sources. To overcome communication overhead, we propose the use of stateful cloud functions, eliminating
the need for costly communications during synchronization. To minimize cold-start overhead, we introduce
a workload-aware Cloud function lifetime management strategy. Vexless has been implemented using Azure
Functions. Experimental results demonstrate that Vexless can significantly reduce costs, especially on bursty
and sparse workloads, compared to cloud VM instances, while achieving similar or higher query performance
and accuracy.

CCS Concepts: • Information systems→ Data management systems; Semi-structured data.

Additional KeyWords and Phrases: Vector Databases, Cloud Functions, Serverless Databases, Serverless Com-
puting

ACM Reference Format:
Yongye Su, Yinqi Sun, Minjia Zhang, and JianguoWang. 2024. Vexless: A Serverless Vector Data Management
System Using Cloud Functions. Proc. ACM Manag. Data 2, 3 (SIGMOD), Article 187 (June 2024), 26 pages.
https://doi.org/10.1145/3654990

1 INTRODUCTION
Cloud functions have gained great popularity in recent years as a new computing paradigm

in the cloud. Major cloud service providers have offered cloud function services such as AWS
Lambda [4], Azure Functions [6], and Google Cloud Functions [9]. Compared to traditional cloud

Authors’ addresses: Yongye Su, su311@purdue.edu, Purdue University, West Lafayette, Indiana, USA, 47907; Yinqi Sun,
sun1226@purdue.edu, Purdue University,West Lafayette, Indiana, USA, 47907; Minjia Zhang, minjiaz@illinois.edu, Univer-
sity of Illinois Urbana-Champaign, Urbana, Illinois, USA, 61801; JianguoWang, csjgwang@purdue.edu, Purdue University,
West Lafayette, Indiana, USA, 47907.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be
honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM 2836-6573/2024/6-ART187
https://doi.org/10.1145/3654990

Proc. ACM Manag. Data, Vol. 2, No. 3 (SIGMOD), Article 187. Publication date: June 2024.

HTTPS://ORCID.ORG/0000-0001-9297-5902
HTTPS://ORCID.ORG/0009-0000-3783-5472
HTTPS://ORCID.ORG/0000-0002-8165-166X
HTTPS://ORCID.ORG/0000-0002-3039-1175
https://doi.org/10.1145/3654990
https://orcid.org/0000-0001-9297-5902
https://orcid.org/0009-0000-3783-5472
https://orcid.org/0000-0002-8165-166X
https://orcid.org/0000-0002-3039-1175
https://doi.org/10.1145/3654990

187:2 Yongye Su, Yinqi Sun, Minjia Zhang, and Jianguo Wang

computing where users have to manage virtual machines (VMs), cloud functions are designed to
hide operational concerns. Users only need to submit the payload functions as code, and cloud
service providers are responsible for automatically executing them upon triggering events. The
instance will terminate immediately after the payload function has finished executing, and users
will only pay for the total uptime of function invocations. Thus, cloud functions are attractive
among performance and cost-sensitive applications with bursty and sparse workloads.

As a result, there is a new trend of optimizing data systems for cloud functions to be elastic
and cost-efficient [28, 55, 59]. For example, Starling [59] and Lambada [55] are designed to im-
prove analytical databases by dynamically controlling the resources allocated for the cloud func-
tion invocation on a query-by-query basis.This avoids over-provisioning of unnecessary resources
while ensuring competitive performance. Moreover, Bian et al. propose to use a hybrid of virtual
machines and cloud functions to improve cost-efficiency in data analytics [28].

In this paper, we propose the use of cloud functions to support efficient vector similarity search
in vector databases, as vector databases have recently gained significant attention [57, 68, 74].
The rise of vector databases is attributed to (1) vector embedding, where unstructured data can
be embedded into high-dimensional vectors for advanced data analytics [26, 44, 53], and (2) large
language models (LLMs), where vector databases can address many limitations in LLMs such as
hallucinations [21] and the inability to incorporate up-to-date information [20].

A straightforward solution is to treat each cloud function as a cloud VM and apply the existing
distributed vector search approach. However, cloud functions bring unique challenges due to their
restrictive and stateless characteristics.

Challenge 1. First, unlike virtual machines, the resources for cloud functions can only be provi-
sioned automatically by the service provider and are adjusted at runtime, meaning the resources
available for each invocation will vary, and each invocation also has an upper limit on resources.
This necessitates the proper partition of workloads to fit the available resources in each function
instance.

Challenge 2.Another challenge is the communication overhead. Because the workloads are parti-
tioned with finer granularity due to limited resources on each instance, there will be more frequent
synchronizations between peer functions working on the same query. Although synchronization
overhead can be alleviated by optimizing communication protocols, it still remains significant be-
cause communications between cloud functions rely on high-latency internet connections.

Challenge 3. Finally, because cloud functions are activated on demand, each function invocation
would have a cold-start delay to start up and initialize the environment and context, before the
payload function can be executed. This can cause significantly delayed responses, usually seconds,
for a cold-start invocation. A straightforward solution could be reusing each invocation by keeping
it active after its payload has finished while waiting for the next payload. However, because of
the service model of cloud functions, for the same hardware configuration, the cost for cloud
functions to stay active is much higher than virtual machines [28]. Increased active time translates
to significantly increased cost, which would defeat the purpose of using cloud functions.

Contributions. The main contribution and overall novelty of this work is the design and imple-
mentation of Vexless, the first vector database management system optimized for cloud functions
that supports vector search for both bursty and non-bursty workloads. It develops a series of new
techniques:
• A new sharding strategy and dispatch engine (Orchestrator) for vector similarity search
workloads that employs the Constrained K-Means algorithm. The algorithm maximizes the

Proc. ACM Manag. Data, Vol. 2, No. 3 (SIGMOD), Article 187. Publication date: June 2024.

Vexless: A Serverless Vector Data Management System Using Cloud Functions 187:3

utilization of each cloud function instance by evenly distributing the workloads across each
instance according to the resources they have respectively. See Section 3.2.
• A new communication mechanism between different function invocations that carry out

different parts of the task. We use Azure Durable Functions [13] as a centralized commu-
nication hub that coordinates the distribution of messages across worker functions. Each
worker function will also have a bilateral message queue using Azure Queue Storage [14]
to ensure non-blocking, asynchronous communication. The communications are handled
completely by Azure’s internal services where low-latency internal channels are used. See
Section 3.3.
• A novel adaptive scheduling algorithm within the Orchestrator that reduces the cold-start

time. First, each cloud function will stay alive in case future similar tasks can reuse this
function without invoking a new one. With the intuition that adjacent queries are usually
related, the algorithm prolongs the lifetimes for frequently invoked functions to maximize
the opportunity for function reuse while maintaining reasonable active time. Finally, we
utilize idle invocations that are still within their lifetimes to perform optional exhaustive
search tasks which will increase overall search accuracy. See Section 3.4.

Open-source. The code is open-sourced at https://github.com/Vexless/Vexless.

2 BACKGROUND AND TARGETWORKLOADS
2.1 Vector Similarity Search

Vector similarity search, as the foundation of vector databases, aims to find similar vectors in
the dataset to the vector representing the query (Query Vector). The measure for vector similarity
is usually L2 (Euclidean) or Cosine distance. This essentially involves finding k Nearest Neighbors
to the query vector, abbreviated as k-NN. However, calculating k-NN can be expensive because
it requires distance computation to every point in the dataset and maintaining the top-k results.
This process can take a long time for a single query on a billion-scale dataset. Although indexes
like kd-trees are able to reduce the search time using their hierarchical structure, the search perfor-
mance degrades significantly when dimensionality increases, a phenomenon often referred to as
the “curse of dimensionality” [37, 51]. However, many interactive applications that involve k-NN
search require millisecond-level query time on billion-scale datasets with over a thousand dimen-
sions. In this case, where 100% accuracy is usually not required, we can use algorithms that find
Approximate Nearest Neighbors (ANN) orders of magnitude faster with only slightly lower recall.
The recall rate, or “recall” for short, is a popular measure for the quality of an ANN result. It is
defined as the percentage of real top-k results within the k results the algorithm has returned.
Note that while in certain applications, such as mass spectrometry [46], it is possible to use exact
vector search, this work focuses on approximate vector search.

Indexes for ANN include tree-based [48, 63], hash-based [24, 39], ProductQuantization (PQ) [40],
and graph-based methods [38, 50, 65]. Tree-based methods include randomized kd-tree forest and
K-Means trees, which were popular for large-scale datasets with low dimensions due to their sta-
ble results. Unfortunately, their performance degrades significantly with higher data dimension-
ality [68]. Probabilistic hashing such as LSH [24, 39] has high query speed at low recall, but it
typically loses its speed advantage at slightly higher recall. Product Quantization methods [40]
are able to achieve high query speed with respectable recall, but they are also known to be less
performant for high recall settings. Graph-based methods [38, 50, 65] have recently emerged as the
current state-of-the-art algorithm for ANN [52], thanks to their fastest query speed with high re-
call in large-scale, high-dimensional datasets. In particular, HNSW (Hierarchical Navigable Small

Proc. ACM Manag. Data, Vol. 2, No. 3 (SIGMOD), Article 187. Publication date: June 2024.

https://github.com/Vexless/Vexless

187:4 Yongye Su, Yinqi Sun, Minjia Zhang, and Jianguo Wang

World) [50] is a popular graph-based ANN method. It uses a hierarchical graph index to progres-
sively find better entry points for each layer that are closer to the query vector.

2.2 Cloud Functions
Traditional cloud computing services require users to manage every aspect of the server. This

includes selecting hardware configurations, choosing operating systems, as well as installing and
managing required software. If users decide to scale up the hardware capabilities, they must either
manually launch and set up new parallel instances or migrate to a new instance with more power-
ful hardware configurations. Users are charged for a cloud instance from when it is created to the
time it is deleted, regardless of its operational status, meaning that even if the server is powered
off, users will still be charged the full price.

On the other hand, cloud functions, as a form of serverless computing, allow users to only submit
tasks in the form of a payload function, i.e., a piece of code, and the cloud service provider will take
care of the underlying infrastructure management such that the actual servers are transparent to
users [4, 6, 9, 43]. This includes automatic provisioning and environment setup; starting up the
server and executing the payload functions upon triggering events; scaling up during runtime by
launching more instances; shutting down the server when the payload is finished. Also, users are
only charged for the total uptime, i.e., the time when the functions are running, which is referred
to as the pay-as-you-go cost model. Compared to traditional cloud computing, cloud functions
offer the advantage of no server management, a fine-grained billing model, and faster start-up
time (within seconds vs. minutes for VMs).

The benefit comes at a price. First, the unit prices for similar hardware configurations are higher
for cloud functions than for VMs, making cloud functions unsuitable for dense and continuous
workloads that require long uptime. The second problem is the limited maximum hardware re-
sources, which require resource-intensive applications to use horizontal scaling, i.e., increase par-
allelism by launchingmore instances.The resources provisioned for each invocation are also differ-
ent and controlled by the service provider; therefore, it will require delicate workload allocation
to ensure that different tasks finish at around the same time. Another problem stems from the
stateless nature of cloud functions, meaning they do not have local storage. To maintain runtime
states, such as intermediate results and labels, applications often need a separate storage service.
This not only incurs additional cost but also introduces more communication overhead to the stor-
age service. Finally, cloud functions terminate immediately after finishing their payloads, so new
function invocations are required for every task, and the start-up time will add to the total execu-
tion time. In contrast, VMs usually stay online 24/7 since users will be charged regardless of the
operational status.

Fortunately, cloud service providers have managed to alleviate some of the problems with spe-
cialized services. Stateful Functions [1, 5, 13, 23] like Azure Durable Functions [13], AWS Step
Functions [5], and Stateful Function Invocations for Alibaba Cloud [1] allow a cloud function in-
stance to have persistent storage. To reduce communication overhead between peer functions run-
ning in parallel, some cloud providers offer message queues, such as Azure Queue Storage [14],
Amazon Simple Queue Service [3], Message Service for Alibaba Cloud [2], and Google Cloud Pub-
/Sub [12], as a buffer for non-blocking communications. In this work, we chose Microsoft Azure
as the cloud provider, but our techniques are also generalizable to other cloud providers that offer
stateful serverless computing services and message queues mentioned above.

However, there are still challenges in building a performant and cost-effective vector database
with cloud functions. These include even distribution of workloads, minimizing communication
overhead, and reducing cold-start time. Vexless addresses these challenges with architectural op-
timizations that will be elaborated in Sec. 3.

Proc. ACM Manag. Data, Vol. 2, No. 3 (SIGMOD), Article 187. Publication date: June 2024.

Vexless: A Serverless Vector Data Management System Using Cloud Functions 187:5

2.3 Target Workloads
This paper targets two types of workloads that are more suitable for cloud functions following

[28, 55, 59, 67]:
• Type 1: Sparse workload. The sparse workload is characterized by a low volume of queries,

such that the number of submitted queries is insufficient to fully utilize the system at all
times. This does not necessarily mean that the number of submitted queries is zero. For
instance, if each vector search takes 1ms (i.e., 1000 qps), and the number of issued queries is
less than say 500, then we consider it a sparse workload. It is important to note that even if
the workload is continuous, as long as it is sparse, cloud functions can be more suitable.
• Type 2: Bursty workload. The key characteristic of the bursty workload is that it has peak

hours and spikes. This workload can be continuous or intermittent, dense or sparse. As long
as there are spikes, cloud functions can reduce costs since they are billed per query. In con-
trast, VMs are provisioned and charged based on peak workload, often wasting a lot of re-
sources.

In summary, cloud functions are suitable for sporadic and unpredictable workloads, i.e., sparse
and bursty workloads. Indeed, many real-world applications have such characteristics. For exam-
ple, Figure 16 of [70] shows that the vehicle peccancy detection system, which requires vector
search, exhibits a significant variation in the number of queries per second. Also, the work [72]
states that “online users tend to exhibit bursty behavior” in web queries requiring vector search.
Similarly, [75] says that question answering on Twitter, which also involves vector search, is
bursty, as shown in Figure 4 of [75]. Furthermore, workloads in IoT applications and many data
processing platforms are sporadic and bursty [55, 59, 60].

In contrast, VMs are more suitable for continuous workloads with stable, predictable, and exten-
sive queries, such that the resource utilization in VMs will always be high. Considering that VMs
are cheaper than cloud functions per resource unit, the overall cost for VMs will also be lower.

3 SYSTEM DESIGN
3.1 Overview

Main Idea.Themain idea of our system is to follow a distributed vector search approach, treating
each cloud function as a computation unit, partitioning vector data into distinct shards, building
a unique index for each shard, and then conducting searches within those shards. In particular,
there are two primary phases:
• Sharding Phase: The data vectors are horizontally partitioned using an unsupervised bal-

anced clustering method, creating distinct data cluster shards with centroid vectors, and
building indexes for further vector searches. Each index shard is then stored within an indi-
vidual cloud function, essentially converting a cloud function into a self-contained individual
vector data processor.
• Search Phase:When the system receives a query vector (𝑞), the system will identify the ap-

propriate index shards to perform vector search. Using an optimized communication mech-
anism, Vexless activates cloud functions containing the shards, and each of these functions
will return a partial vector search result. Then the aggregator receives and re-ranks these
search outputs to compute the global top-k results as the final output. However, implemen-
tations using serverless functions would inherently face the frequent cold-start problem. To
overcome this, we adopted stateful functions and a heuristic keep-alive strategy. This sig-
nificantly reduces the cold-start overhead in sporadic and unpredictable real-world search
scenarios.

Proc. ACM Manag. Data, Vol. 2, No. 3 (SIGMOD), Article 187. Publication date: June 2024.

187:6 Yongye Su, Yinqi Sun, Minjia Zhang, and Jianguo Wang

Idx
i Centroid i

Partition i Partition i+1

Idx
i+1 Centroid i+1

Partition i-1

Idx
i-1 Centroid i-1

... ...

... ...

Query	vector
Search	result

Orchestrator Function

QV, Entity_IDs

Result
Aggregator

Res(i) Res(i+1)

Reranked res Query
Dispatcher

QV
Res

IDE / Web UI

New Approach for
Reducing Cold Start

Partitioned
Data

Durable
Entities Purpose-Built

Sharding-based
Index Strategy

Purpose-Built
Sharding-based
Search Strategy

Implementation
Deployment

Optimized
Communication

Serverless
Cloud Functions

Fig. 1. System Architecture Overview of Vexless

As shown in Figure 1, Vexless adopted a variety of techniques for managing and searching
large amounts of vector data. The yellow lightning symbols represent cloud functions we used in
Vexless such as durable entity functions and the orchestrator function, with the latter working as a
serverless resource coordinator, task dispatcher, function lifetime scheduler, and result aggregator,
the users can have the serverless system control handed to the orchestrator. Such a distributed
search architecture solves data distribution via sharding, leveraging cloud functions as compute
units, and accelerating the distributed search process with our refined communication protocol.

Challenges. However, vector search systems face several non-trivial challenges in leveraging the
cloud functions: the constraint on memory size, communication latency, and frequent cold-start
overhead.
• Sharding and Managing Data: To handle a large amount of vector data, it is not possible

to simply use one cloud function to handle the entire dataset (as shown in Figure 2b) due
to the memory limit for one cloud function. Consequently, a naive implementation is to de-
ploy multiple functions to accommodate the large scale of data. Notably, traditional uniform
sharding will result in high cost and increased query time due to the buckets effect caused by
“straggler tasks”. Furthermore, clustering-based sharding can also result in uneven clusters,
necessitating more function invocations [65]. We explore this further in Section 3.2.
• Reducing Data Communication Overhead: Traditional HTTP-based and storage-centric

communication protocols impose a considerable communication overhead in vector search,
which could be problematic for such latency-sensitive applications. Thus, a novel approach
to streamline communication in this scenario becomes critical. A detailed discussion of our
strategies are shown in Section 3.3.
• Minimizing Cold-start Time: Last but not least, real-world vector search on cloud func-

tions could take very long time when all the functions are invoked at cold state. Even so,
existing works for reducing serverless function cold-start times are insufficient, they either
do not fit the Azure platform [47] and introduce additional service cost [73], or do not solve

Proc. ACM Manag. Data, Vol. 2, No. 3 (SIGMOD), Article 187. Publication date: June 2024.

Vexless: A Serverless Vector Data Management System Using Cloud Functions 187:7

Intel 8171M Intel E5-2673
CPU Models

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Se
ar

ch
 L

at
en

cy
 (m

s)

Virtual Machines
Azure Functions

(a) Vector Search Latency

500K 1M 1.5M 2M 2.5M 3M 4M 5M 10M
Number of indexed Deep vector data

0

1

2

3

4

5

M
em

or
y

us
ag

e
(G

B
)

Azure Functions
Virtual Machines

(b) Memory Capacity

Fig. 2. Vector Search Computing and Memory Characterization of Azure Cloud Functions

the cold-start problemwith just prebaking for nearly frequent activation of our vector search
with low latency [64]. This challenge is studied in depth in Section 3.4.

3.2 Purpose-Built Sharding-based Index and Search Strategy
Cloud functions are built for lightweight tasks and often have very limited resources (CPU,

memory, disk storage, etc.). For example, in the serverless plan, Azure Functions have a maximum
memory limit of 1.5 GB per instance [7, 69]. As shown in Figure 2b, each bar represents thememory
usage for the specific number of indexed vectors. An “X” on a bar indicates that the corresponding
solution is not able to accommodate the data index for the specified number of vectors. However,
in Figure 2a, we observed that within the Azure CF memory limit, its vector search computing
latency remains the same as the virtual machine when using the same CPU configuration.

This phenomenon brings up an interesting question: can we have the same level of comput-
ing power as virtual machines while paying in a pay-as-you-go solution with great elasticity? As
such, one natural idea is to split the vector database into multiple smaller partitions and use the
aggregated resources of multiple serverless cloud functions to serve user requests. Notably, the
primary objective of utilizing multiple serverless cloud functions is to ensure cost efficiency while
maintaining high search accuracy and low latency.

However, a naive implementation using many serverless cloud functions cannot achieve the
above goal because it either cannot meet the latency requirement, or it uses more serverless cloud
functions than necessary, leading to increased costs. To address these challenges, we rearchitect
the vector search index and propose new search algorithms specifically designed for serverless
cloud functions to achieve the goals.

While both traditional and vector databases require balanced sharding for efficiency, the unique
characteristics of vector data – such as high dimensionality, particular distance metrics, and the
need for efficient ANN search algorithms present unique challenges and considerations for par-
titioning in vector databases. Traditional databases often rely on random, ranged-based, or hash-
based sharding, whereas vector databases often require more complex partitioning methods that
account for the data’s spatial distribution and the nature of vector space, as traditional sharding
methods may not effectively preserve the proximity relationships essential for accurate and effi-
cient vector search. To split a vector database into multiple partitions, prior works often resort to
uniform sharding, hash-based sharding [24, 49], and K-Means clustering-based sharding such as

Proc. ACM Manag. Data, Vol. 2, No. 3 (SIGMOD), Article 187. Publication date: June 2024.

187:8 Yongye Su, Yinqi Sun, Minjia Zhang, and Jianguo Wang

1 2 3 4 5
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

M
em

or
y

Fo
ot

pr
in

t (
G

B
)

SIFT10M
Unbalanced
Constrained
Redundant Constrained

1 2 3 4

Partition #

DEEP10M

1 2 3

GIST1M

Fig. 3. Comparison of Vector Data Clustering Results using Different Unsupervised Clustering Algorithms

Faiss [42], SPTAG [31], and SPANN [32]. While the aforementioned techniques are common, they
may not be suitable for constructing indexes in serverless cloud functions. For example, uniform
sharding evenly distributes a vector database across multiple partitions. Yet, due to the lack of
locality within each partition, a query would need to search all partitions to identify the nearest
neighbors. Both hash-based and clustering-based sharding group similar data points together, re-
ducing the number of groups a query needs to search to retrieve near neighbors. However, these
methods have been criticized for various drawbacks, one of which is the issue of partition imbal-
ance. Though SPANN appears to achieve balanced partitioning, it relies on disk-based solutions
without setting a strict partition limit on the index partition memory usage. Instead, it emphasizes
overcoming latency issues through its balanced posting list. Our work focuses on memory con-
straints, and our solution trade-off redundancy with only a 12% memory increase, nearly half of
the 20% expansion SPANN incurs [32], thereby optimizing memory costs.

3.2.1 Index strategy. Figure 3 provides a concrete example of how different clustering algorithms
partition three common vector search datasets. The current K-Means implemented in Faiss li-
brary [42] and employed in Inverted File Index (IVF) [40] does not guarantee that the clusters
are balanced, even pre-setting min_points_per_centroid and max_points_per_centroid parameters,
as it only defines the ratio of the number of training points to the number of centroids. As shown,
the memory footprint of different partitions can reach up to 113% of the memory capacity limit.
This imbalancemay not pose a significant issuewhen deploying ANN search in data center servers,
which have substantial memory capacity. However, serverless cloud functions have limited mem-
ory resources that vector search heavily relies on, and such imbalance could easily lead to out-of-
memory problems. Alternatively, it might require the use of additional serverless cloud functions
to handle a dataset, thereby increasing unnecessary deployment costs.

To address this imbalanced partition issue, we utilize constrained K-Means [29] as shown in the
first half of Algorithm 1, as it produces the best and well-balanced result.

While balanced K-Means is not new, applying it in Vexless poses unique challenges in the in-
dex design. For example, balanced K-Means addresses the issue of partition imbalance, enabling
each partition to satisfy the memory constraint of serverless cloud functions. However, this ap-
proach results in worse search efficiency when compared to standard K-Means. One reason is that
balanced clustering may force more boundary points between two clusters to achieve a better
balance, rather than assigning them to their nearest cluster centroids. As such, it increases the
likelihood of searching in incorrect clusters during the retrieval phase. For a random query vector
𝑞 encountered in the boundary of multiple cluster partitions, if we simply consider the partition
having the closest distance to 𝑞, we may miss its true nearest neighbor vector. This is because

Proc. ACM Manag. Data, Vol. 2, No. 3 (SIGMOD), Article 187. Publication date: June 2024.

Vexless: A Serverless Vector Data Management System Using Cloud Functions 187:9

Algorithm 1: Vexless’s Indexing with Constrained K-Means Clustering and Redundancy
Option

1: Input: Database 𝐷 of𝑚 base vector in R𝑛 . Initial cluster centroids 𝐶1,𝑡 ,𝐶2,𝑡 , . . . ,𝐶𝑘,𝑡 at
iteration 𝑡 .

2: Analyze the single vector dimension of 𝐷 , linearly infer the maximum number of vectors
𝑁𝑚𝑎𝑥 that each cluster can host under the current memory limit, 𝑘 ← ⌈ 𝑚

𝑁𝑚𝑎𝑥
⌉, 𝑁𝑚𝑖𝑛 ← 𝑚

𝑘 .
Stage 1: Clustering-based Sharding

3: Constrained_Clustering_Algorithm(𝑁𝑚𝑖𝑛 , 𝑁𝑚𝑎𝑥 , 𝑘) [29]
4: Get clusters 𝑐1, 𝑐2, . . . , 𝑐𝑘 with centroids 𝐶1,𝐶2, . . . ,𝐶𝑘 .

Stage 2: Index Building
5: Initialization: For cluster 𝑐𝑖 , initialize an empty index partition 𝐼𝑖 . Set distance threshold 𝑇

for redundancy indexing.
6: for each base vector 𝑣 in 𝐷 do
7: Compute v’s distances d(𝑣,𝐶𝑖) to centroids 𝐶1,𝐶2, . . . ,𝐶𝑘 .
8: Rank d(𝑣,𝐶𝑖).
9: Include 𝑣 in the index 𝐼ℎ corresponding to its centroid 𝐶ℎ .

10: for each centroid 𝐶𝑖 where 𝑖 ≠ ℎ do
11: if d(𝑣,𝐶𝑖) < 𝑇 then
12: Add 𝑣 to 𝐼𝑖 .
13: end if
14: end for
15: end for

while the 𝑞’s distance to a partition X’s centroid is farther than that of another partition Y, the
true nearest neighbor may be in partition X.

This raises a question: can balanced K-Means achieve a similar search efficiency as standard
K-Means? To address this issue, we introduce radius-threshold-based optimization that sig-
nificantly improves the search efficiency of balanced K-Means by carefully adding a small set of
boundary nodes to each cluster. After the balanced K-Means clustering process with a set of cluster
centroids’ coordinates with the desired count, to decide which cluster partition each base vector
belongs to, we first calculate the distances between 𝑞 and centroids.

We used HNSW from the HNSWLib library [50] in our implementation as the index algorithm
because of its great scalability with higher dimensional vectors and great balance between accu-
racy and query speed. However, our techniques do not limit the choice of vector index algorithms;
other methods like IVF or LSH can also be used.

3.2.2 Search strategy. In Vexless, our serverless vector search starts by receiving a query vector
(𝑞) from the user’s end. The queries are directly accepted by an external query handler designed
for low latency and cost-efficient messaging that forwards the queries to the orchestrator, in order
to prevent the function from being overwhelmed with excessive queries.

Given a query 𝑞, the orchestrator determines and activates the 𝑞-relevant partitions for vector
search based on the qualifying distance scores. It calculates the 𝑞’s distance to different partition
centroids and then determines its search partition DEF IDs by comparing the distance score. Once
the score is lower than the threshold we use in the indexing phase, the 𝑞 is dispatched to the
corresponding partition. At the same time, it dispatches the 𝑞 to previously activated Durable
Entity Functions (DEFs) for them to voluntarily conduct the vector search. For those 𝑞-related
partitions, once their DEFs are ignited, they are dedicated to their partition’s vector search tasks.

Proc. ACM Manag. Data, Vol. 2, No. 3 (SIGMOD), Article 187. Publication date: June 2024.

187:10 Yongye Su, Yinqi Sun, Minjia Zhang, and Jianguo Wang

By only activating 𝑞-related partitions instead of activating all the partitions, we achieve cost
efficiency.

Once a local search on a DEF partition is finished, Vexless channels results via our Optimized
Communication Mechanism introduced in Section 3.3, ensuring that the combined results from
multiple DEFs are delivered and then aggregated. For aggregating results from shards, the returned
results include a list of double-value tuples (original vector IDs and their corresponding distances
to the query vector). Then we merge and re-rank all the top-k results based on distances returned,
as they are globally comparable, and return the global top-k. During irrelevant query periods for
activated DEFs, our new approach for reducing cold-start latency presented in Section 3.4 plays a
crucial role inmanaging keep-alive times, ensuring a balance between responsiveness and resource
conservation cost.

3.3 Optimized Communication Mechanism
Vexless tailors the serverless architecture to the needs of real-time, low-latency vector search. In

particular, we identify the primary bottleneck for achieving low-latency vector search is the com-
munication latency across serverless cloud functions. Next, we present a serverless architecture
that substantially minimizes communication overhead.

State-of-the-art vector search systems deliver single-digit millisecond search latency on datasets
with multi-million records on a single machine. When multiple serverless cloud functions are
employed in parallel, additional synchronization is necessary to gather near neighbors from these
parallel serverless cloud functions. As such, it raises the question: would this synchronization
overhead become a major bottleneck or is it small enough for low-latency vector search?

Before introducing our method, we first examine two common approaches for communication
in serverless functions: the global-storage-based method, and the HTTP-based method:

Global-storage-based: Prior works, such as Starling [59], have employed Amazon S3 storage
to transfer intermediate results between multiple serverless cloud functions. Since S3 is global
storage, multiple serverless cloud functions can utilize it as a medium for data and state exchange
for its affordability and universality.

HTTP-based: An alternative approach is to use the conventional HTTP-API of cloud functions
as a direct communication channel between serverless functions. This method assigns a unique
URL to each function, making it publicly accessible including other serverless cloud functions.

We conduct experiments to measure the actual search time and the communication time spent
on synchronization, using the above two methods as well as ours. Figure 4b illustrates the time
breakdown. As shown, while the pure search time for high-precision is around 1 millisecond, the
time spent on communication usually takes less than 0.1 milliseconds. Therefore, the latency is
dominated by network communication. Following Amdahl’s law, the search latency cannot be
significantly decreased with more serverless cloud functions unless the communication overhead
can be reduced.

As shown in Figure 5a and Figure 5b, HTTP-based and storage-based methods often seem in-
effective in intra-cloud communications simply because the overhead is too high compared with
vector search (see Figure 4b) which directly compares the single query vector’s transmission over-
head of different communication solutions combined with the latency of conducting costly single
query search on SIFT1M index for 99.95% recall.

Furthermore, according to Figure 4a as the size of the communication message increases, the
communication latency increases from 0.06 ms on 0.1 KB to 7.90 ms on 128 KB for the HTTP-
based mechanisms. This increase in communication overhead is not scalable, because the latency

Proc. ACM Manag. Data, Vol. 2, No. 3 (SIGMOD), Article 187. Publication date: June 2024.

Vexless: A Serverless Vector Data Management System Using Cloud Functions 187:11

0.1 1 2 4 8 16 32 64 128256
Size (KB)

0

20

40

60

La
te

nc
y

(m
se

c)

Azure Functions
Azure Blob Storage
Azure Durable Functions

(a) Communication Overhead

(a) (b) (c)0

2

4

6

8

10

La
te

nc
y

(m
s)

Http-based
Blob Storage
Durable Function
Vector Search

(b) Overhead with Vector Search

Fig. 4. Cloud Communication Overhead Comparison

Public IP

…
Func Func

(a) HTTP-Based

Blob Storage

B
lo

ck
 0

B
lo

ck
 1

B
lo

ck
 2

B
lo

ck
 n…

Func

(b) Blob Storage

…
Func

Func

Azure Storage Queue

(c) Durable Function

Fig. 5. Comparison Between Various Communication Methods for Vector Search on Azure Serverless Plat-
form

is completely dominated by network transmission, resulting in an end-to-end latency that is signif-
icantly worse than server-based solutions. The high overhead of HTTP-based communication is
attributed to the costly process of establishing HTTP connections. Given that generally, serverless
cloud functions are stateless by default, such a connection must be established each time before
Vexless performs research results synchronization in vector searches, leading to substantial over-
head. On the other hand, the latency for the global storage-based mechanism remains relatively
stable. However, the absolute latency (∼10 ms) is still a barrier to achieving low-latency vector
search. The reason for the slow yet relatively constant speed of global storage-based communica-
tion is that global storage is typically optimized for throughput-oriented workloads with limited
bandwidth (for instance, the network throughput for a single page blob of Azure Blob storage is
60 MiB/s [17], which is significantly lower than the mainstream DDR4 main memory bandwidth).
Without an efficient communication mechanism, the potential of serverless cloud functions for
low-latency vector search remains quite limited.

To tackle the above challenge, Vexless introduces a hybrid serverless architecture for vector
search.This approach significantlyminimizes communication overheadwhilemaintaining the cost
advantage of serverless cloud functions. Our key idea is the incorporation of a stateful func-
tion (e.g., Azure Durable Function) as the orchestrator function in Vexless. A stateful function has
the ability to preserve states across multiple function invocations, which helps in faster recovery
after deactivation and minimizes the impact of cold-starts mentioned above. It eliminates the need
for costly HTTP-based and storage-based communication during synchronization and allows for
more efficient communication channels, such as message passing via Azure Queue Storage [14].

Proc. ACM Manag. Data, Vol. 2, No. 3 (SIGMOD), Article 187. Publication date: June 2024.

187:12 Yongye Su, Yinqi Sun, Minjia Zhang, and Jianguo Wang

Our experiments in Sec. 4 show that this hybrid approach reduces the communication overhead by
an order of magnitude, supporting serverless cloud functions for low-latency vector search while
still leading to high search quality with low cost.

3.4 Cold Start Reduction
In pay-as-you-go serverless platforms, the term cold-start represents the necessary initialization

phase of a serverless cloud function. Serverless cloud functions are likely to encounter cold-starts
when they are called upon after a period of inactivity or when no warm instances are available to
handle an external request. During such a cold-start process, the serverless cloud function must
first allocate compute and memory resources to create a new environment for running the server-
less cloud function and load the function code before starting the actual execution process. Addi-
tionally, a cold-start also triggers the overhead of loading the Vexless vector index, often about 1
GB in size, to DRAM via the high-latency cloud storage, further prolonging the critical path length.
Therefore, cold-starts can significantly restrict the performance of Vexless without tailored opti-
mizations. It is also worth noting that among all the runtime stacks and environments in Azure
Functions, Python functions running in Linux stand out from peers [10], therefore, our system
was built based on the setting.

When invoking serverless cloud functions, the users often need to specify a timeout for the al-
located compute and memory resources. During this timeout period, the serverless cloud function
instance remains warm, meaning that it can process requests without incurring all the overhead
associated with a cold-start. Once this timeout period is over, the serverless cloud function releases
its hold of the resources and the subsequent invocation will trigger a cold-start. It is non-trivial to
set this timeout duration. A long duration tends to mitigate the cold-start issue but also increases
the overall deployment cost. However, a shorter duration gives the opposite tradeoff. More im-
portantly, it is suboptimal to place a fixed timeout duration for all serverless cloud functions at all
times, given that actual query distribution may vary (e.g., queries may exhibit diurnal distribution)
and different serverless cloud functionsmay become activated during vector search.Therefore, one
optimization opportunity is to adaptively set timeout duration for each serverless cloud function
in Vexless.

To tackle the above challenge, Vexless introduces a novel approach to mitigate the overall cold-
start issue while maximizing the cost savings with two strategies as follows (shown in Figure 6 and
Algorithm 2). The key of such a mechanism is that orchestrator functions in Azure Durable Func-
tions can signal and control Durable Entities to reset or adjust their state through administrative
messages. With the timer functionality of the orchestrator function combined with signaling, we
can maintain the stateful entities in an active, ready-to-execute state, optimizing the performance
and responsiveness of the serverless application.

Rewind Mechanism. The “rewind” operates as an initializing and rewarding mechanism. Upon
receiving a random query vector 𝑞, this method first winds up task-relevant stateful functions
(DEFs) with a full lifecycle, then observes recent query workloads, alters the lifecycle of serverless
functions dynamically, and refreshes their “warm” states when necessary. This heuristic approach
dynamically adjusts the keep-alive time of each cloud function thread based on the query arrival
rate observed in the previous time window. Then the keep-alive time is prolonged if the query
workload is high, reducing frequent cold-starts. As described in Algorithm 2, when a 𝑞 comes with
top relevant partitions to search, the corresponding related partitions’ running time less than the
threshold will be rewound to the time threshold.

Diligent Search Before Laziness Mechanism. Once receiving a query vector from the external
handler, our system adopts a diligent search strategy, which emphasizes searching within the most

Proc. ACM Manag. Data, Vol. 2, No. 3 (SIGMOD), Article 187. Publication date: June 2024.

Vexless: A Serverless Vector Data Management System Using Cloud Functions 187:13

… …

q

Orchestrator

Volunteer
Relevant q

… …

Orchestrator

q

(a)DEF Starts with a Relevant 𝑞 and Then Volunteers
Search

… …

Orchestrator

… …

Orchestrator

q

q

Timer

Rewind!

(b) Insufficient DEF Timer Being Rewound by Rele-
vant 𝑞

Fig. 6. The Two Mechanisms in Section 3.4 to Maintain the Warmness for Recently Used Computing DEFs

probable serverless cloud function target partitions according to our search strategy, but also gives
tasks to those running DEFs, letting them work as volunteer DEFs to avoid instance idling in their
lifecycles. Only before or after the diligent search phase (the active lifecycle) does the system
shift to an opportunistic “lazy” search strategy for inactive DEFs, making sure a DEF will only be
invoked by its top relevant search task. This ensures high search relevance in our defined search
strategy while maximizing the use of available computing resources.

Figure 6 illustrates the combination of the two aforementioned mechanisms. The volunteer job
is a non-relevant query task for the corresponding query, which is the idea that “diligent searching
starts with laziness”. The rewind operation happens if and only if a relevant query task hits the
corresponding partition function with the remaining lifetime being less than the threshold time,
and it will rewind again to the threshold. While the rewind mechanism maintains the “warmness”
of computing functions that ensure quick response times, the diligent searching mechanism op-
timizes the search process by using available resources diligently. They work in pairs to enable
Vexless to deliver rapid search results while also managing resources effectively.

3.5 Generalizability
Note that although we built our system using the Azure cloud platform, our design ideas can

be applicable to other cloud providers such as AWS and GCP. This is because our system mainly
relies on services such as cloud functions, stateful functions, and message queue services that
are also available in AWS and GCP. For example, we used Azure Durable Functions, which are
similar to Google Cloud Workflows services hosted on cloud functions and AWS Step Functions.
For Azure Queue Storage, the equivalent services are Google Cloud Pub/Sub and Amazon Simple
Queue Service (SQS).

4 EXPERIMENTS
In this section, we perform a comprehensive evaluation of our vector search system that sys-

tematically compares our solution with contemporary alternative solutions on the same platform

Proc. ACM Manag. Data, Vol. 2, No. 3 (SIGMOD), Article 187. Publication date: June 2024.

187:14 Yongye Su, Yinqi Sun, Minjia Zhang, and Jianguo Wang

Algorithm 2: Vexless Rewind Mechanism for Cold Start Reduction
1: Input: Query vector 𝑞, list of serverless function instances

𝐹 each with function timers 𝑇𝑓 and corresponding states 𝑆 .
A function 𝑓 with 𝑇𝑓 = 0 is considered as a “cold function”.

2: Output: List of selected function instances 𝐹𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 to execute the query
3: Init: 𝐹𝑑𝑖𝑙𝑖𝑔𝑒𝑛𝑡 , 𝐹𝑙𝑎𝑧𝑦 , and 𝐹𝑣𝑜𝑙𝑢𝑛𝑡𝑒𝑒𝑟 :

𝐹𝑑𝑖𝑙𝑖𝑔𝑒𝑛𝑡 : Top probable functions (active) related to 𝑞 in 𝐹 .
𝐹𝑙𝑎𝑧𝑦 : Top probable functions (inactive) related to 𝑞 in 𝐹 .
𝐹𝑣𝑜𝑙𝑢𝑛𝑡𝑒𝑒𝑟 : Active functions not directly related to 𝑞 in 𝐹 .

4: for each function instance 𝑓 in 𝐹 do
5: if 𝑓 is related to 𝑞 then
6: if 𝑇𝑓 ≠ 0 then
7: 𝑇𝑓 ← max(𝑇𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 ,𝑇𝑓) /* Timer Rewind */
8: 𝐹𝑑𝑖𝑙𝑖𝑔𝑒𝑛𝑡 ← 𝐹𝑑𝑖𝑙𝑖𝑔𝑒𝑛𝑡 ∪ {𝑓 }
9: else if 𝑇𝑓 == 0 then

10: 𝐹𝑙𝑎𝑧𝑦 ← 𝐹𝑙𝑎𝑧𝑦 ∪ {𝑓 }
11: end if
12: else if 𝑇𝑓 ≠ 0 then
13: 𝐹𝑣𝑜𝑙𝑢𝑛𝑡𝑒𝑒𝑟 ← 𝐹𝑣𝑜𝑙𝑢𝑛𝑡𝑒𝑒𝑟 ∪ {𝑓 }
14: end if
15: end for
16: 𝐹𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 ← 𝐹𝑑𝑖𝑙𝑖𝑔𝑒𝑛𝑡 ∪ 𝐹𝑙𝑎𝑧𝑦 ∪ 𝐹𝑣𝑜𝑙𝑢𝑛𝑡𝑒𝑒𝑟

return 𝐹𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑

using the HNSW index (HNSWLib). As a popular method for ANN vector similarity search, HNSW
boasts exceptional performance on vector search speeds at high recall rates. We evaluated the
monthly cost and end-to-end performance across different vector search solutions to demonstrate
the overall competence of Vexless as a vector database.Thenwe designed experiments in controlled
settings to prove the effectiveness of our individual design choices.

4.1 Experiment Setup
Datasets (Table 1): We used three datasets that are commonly used in previous ANN re-

search [32, 58, 68].The first vector dataset we used for our evaluation was SIFT10M [40].The Scale-
Invariant Feature Transform (SIFT) is a well-known computer vision algorithm that identifies and
outlines local features in images. The second dataset, DEEP10M, is extracted from DEEP1B [25].
The DEEP10M dataset also consists of 10 million 96-dimensional L2-normalized [8] floating point
vectors, known as deep descriptors. These vectors are taken from the last fully-connected layer
(FCL) of the GoogLeNet [66] model, which was pre-trained on the Imagenet [33] classification
task. The third dataset, ANN_GIST1M [35], contains 1 million GIST feature vectors that encap-
sulate the global attributes of images, including color, texture, and spatial structure. Despite its
smaller size compared to the SIFT10M and DEEP10M datasets, GIST1M remains a considerable
challenge for vector search algorithms due to its high dimensionality.
Query Pattern and Workloads: The query vectors in three datasets are provided with their

ground truth. The dimensionality (i.e., width) of the query vectors remains the same as their base
vectors in Table 1, thus enabling us to find the approximate nearest neighbor via indices.

Proc. ACM Manag. Data, Vol. 2, No. 3 (SIGMOD), Article 187. Publication date: June 2024.

Vexless: A Serverless Vector Data Management System Using Cloud Functions 187:15

Table 1. Datasets

SIFT10M DEEP10M GIST1M
of Base Vectors 10,000,000 10,000,000 1,000,000
of Query Vectors 10,000 10,000 1,000
Dimensionality 128 96 960
Data type int32 float32 int32

To ensure a comprehensive evaluation, we test our system on various query workloads, includ-
ing sparse, bursty, continuous, and real-worldworkloads. For the sparse workloads, the query
workload generation proceeds as follows: In the first 5 minutes, we issue either 1000 qps or 4000
qps, then enter an idle period for the next 𝑡 minutes (e.g., 𝑡 equals 2 minutes), followed by another
5 minutes of issuing queries, and then another idle period of 𝑡 minutes. This cycle repeats period-
ically. By default, we set the idle time 𝑡 to 2 minutes for this workload. This is also the default
workload used in many experiments such as Figure 7 and 14. But we also explore the impact of
different idle times in Sec. 4.5.3. For the bursty workloads, we generate three synthetic workloads
with low, medium, and high levels of burstiness as described in Sec. 4.5.1. The data generator is
explained in Sec. 4.2. Additionally, we assess our system’s performance on real-world workloads,
as explained in Sec. 4.5.2.

Evaluation Metrics: To assess search efficiency and performance, both latency and accuracy
are critical parameters. Query latency is evaluated by calculating the average execution time for
sequentially executed queries in milliseconds across different minute-wise query workloads. As
for accuracy, we conducted experiments with varying values of k. By default, k is 10. This presents
a great challenge as it measures the accuracy of identifying the top 10 nearest neighbors among
the base vectors, denoted as recall@10.

Experimental Environments:The configuration we use for the static VM baseline solution is
Azure compute-optimized VM F4 [11]. It uses the exact same Intel(R) Xeon(R) E5-2673 and 8171M
CPU [54] as Azure Function, and it also has a suitable 8GB memory to support the current vector
search workload with appropriate disk storage. We have verified that the underlying system of
Azure Function is able to produce highly optimized machine code utilizing SIMD and intrinsic
instructions native to the hardware. In our experiments, we utilized the Numpy library which
is well-optimized for SIMD, leveraging the AVX2 instruction set that enables data parallelism,
meaning that a single instruction will operate on multiple data points at a time. This optimization
significantly accelerates our compute-intensive workloads, which is critical to the efficiency and
speed of our vector search process. The startup cost of a cloud function is approximately 3 × 10−6
USD each time, with the overhead of starting up being around 1-2 seconds, while the startup
overhead of a VM is around 1-2 minutes. Azure Functions follows a pay-as-you-go pricing model
and does not incur a fixed cost per instance per day.

ExperimentalMethodology:We compare our optimized strategies in Vexless with a complete
HNSW index (built using the entire dataset) running vector searches on a cloud VM as the baseline.
Specifically, due to the non-disjoint property of sharding in the baseline, every data shard directly
returns a list of its top-k search results: global vector IDs and their distances to the query vector.

4.2 Workload Generator
To create synthetic workloads of various properties and simulate real-world workloads, we

present our workload generator by controlling the query arrival time. It assigns dispatch times

Proc. ACM Manag. Data, Vol. 2, No. 3 (SIGMOD), Article 187. Publication date: June 2024.

187:16 Yongye Su, Yinqi Sun, Minjia Zhang, and Jianguo Wang

to 𝑛 jobs (i.e., queries) within a given time interval following the principle of signal decomposi-
tion [36], where signals can be synthesized by components of different frequencies. Specifically,
our approach first divides the interval into 𝑔 bins and then assigns the 𝑛 jobs to each bin using
an outer distribution; subsequently, each job is assigned its precise timestamp within the sub-
interval (bin) using another set of inner probability distributions. The binning process allows for
the flexibility of using different distributions for the lower frequency components to better model
macro-level features [34, 36, 62]. Both the outer and inner distributions can be a combination of
the following parametric distributions: Uniform, Gaussian, Zipf, and Poisson, which are used to
model the specific features of the target workload. For example, the Zipf distribution is used to
simulate bursts [30], the Gaussian distribution is widely used to model stochastic events such as
network traffic [41, 62], and the Poisson distribution is effective for modeling the arrival times of
jobs [22, 27]. We can adjust the composition of the distributions and parameters of each distribu-
tion, as well as the granularity of binning, based on the characteristics of the target workload, such
as skew, smoothness, number of spikes, etc.

For a comprehensive evaluation of Vexless under a variety of workloads, we first generated
workloads that resemble real-world scenarios, such as those found in an analytical database system
[70] (Figure 11d) and a social network platform [75] (Figure 11e). Then, we generated workloads
under three different bursty levels: high (Figure 11a), medium (Figure 11b), and low (Figure 11c).

4.3 Overall Results
Our first experiment demonstrates the general search performance with cost analysis across dif-

ferent query arrival rate scenarios. As mentioned in Section 3, Vexless builds on Azure Functions,
which adopts a pay-as-you-go billing model. This means users pay only for the computational re-
sources their functions actually use. The cost is related not just to the function activation count,
but also to the duration of time the function runs after activation. In contrast, when opting for
a virtual machine, users are committed to a more rigid pricing scheme, bearing costs for prede-
fined resource allocations charging 24/7, and irrespective of actual usage. We also compared our
solution to another serverless approach: a naive cloud function-based method. This alternative
offers a straightforward approach to implementing vector search on serverless cloud functions
using a uniform-sized partition. However, it lacks the clustering and redundancy enhancements
we discuss in Section 3.2.

Our results, as shown in Figure 7 that follows the styles of [32, 45, 70], highlight Vexless’s sig-
nificant advantage in both the performance-to-cost ratio and latency across different datasets. For
example, Figure 7(a, d, g) shows that under sparse workloads, Vexless offers monthly cost savings
of up to 5.3x compared to a statically provisioned VM-based solution and as much as 6.5x when
compared to naive cloud function implementations. In Figure 7(b, e, h) we see the Vexless con-
tinues to have significantly lower monthly costs across the board even under dense workloads.
Furthermore, Figure 7(c, f, i) also shows that Vexless achieved the best search performance across
three different datasets.

This demonstrates one of Vexless’s key features – cost-efficiency. It optimally allocates serverless
resources to guarantee the best search performance with cost-effective results.

Moreover, we conducted tail latency analysis on vector search using different datasets to en-
sure consistent search performance. Our percentile latency analysis shows Vexless’s reliability
and consistency in vector searches on the DEEP10M dataset. Through a comparative figure, we
observed that Vexless consistently outperforms a VM-based benchmark across average, 95th, and
99th percentiles shown in Figure 8.

Proc. ACM Manag. Data, Vol. 2, No. 3 (SIGMOD), Article 187. Publication date: June 2024.

Vexless: A Serverless Vector Data Management System Using Cloud Functions 187:17

Vexless VM Naïve CF
0

50

100

150

200

250

C
os

t(
U

SD
)

(a) SIFT10M: Monthly Cost,
SparseQueries

Vexless VM Naïve CF
0

50

100

150

200

250

300

C
os

t(
U

SD
)

(b) SIFT10M:Monthly Cost, Dense
Queries

0.0 0.1 0.2 0.3 0.4 0.5 0.6
Latency (msec)

70

75

80

85

90

95

100

R
ec

al
l (

%
) @

10 Vexless
VM
Naïve CF

(c) SIFT10M: Search Recall@10 Per-
formance

Vexless VM Naïve CF
0

50

100

150

200

C
os

t(
U

SD
)

(d) DEEP10M: Monthly Cost,
SparseQueries

Vexless VM Naïve CF
0

50

100

150

200

250

C
os

t(
U

SD
)

(e) DEEP10M: Monthly Cost,
DenseQueries

0.0 0.1 0.2 0.3 0.4 0.5 0.6
Latency (msec)

60

70

80

90

100

R
ec

al
l (

%
) @

10

Vexless
VM
Naïve CF

(f) DEEP10M: Search Recall@10
Performance

Vexless VM Naïve CF
0

25

50

75

100

125

150

C
os

t(
U

SD
)

(g) GIST1M: Monthly Cost, Sparse
Queries

Vexless VM Naïve CF
0

25

50

75

100

125

150

175

C
os

t(
U

SD
)

(h) GIST1M: Monthly Cost, Dense
Queries

0 1 2 3 4 5
Latency (msec)

60

70

80

90

100

R
ec

al
l (

%
) @

10 Vexless
VM
Naïve CF

(i) GIST1M: Search Recall@10 Per-
formance

Fig. 7. The Left Two Columns Show the Monthly Cost of Vector Search with the Same Parameters under
Sparse (a, d, g) and Dense (b, e, h) Workloads using Different Implementations: Vexless, Traditional Cloud
Virtual Machines (the Cost Was Reduced by Memory Usage, with 100% CPU Cores Used for Intra-query
Parallelism), and Naive Implementation with Cloud Functions. The Right Column Shows the Recall-Latency
Graph of the Three Implementations. Each Row Shows Results fromDifferent Datasets (SIFT10M, DEEP10M,
and GIST1M)

0.00 0.25 0.50 0.75 1.00 1.25 1.50
50th/95th/99th Latency (msec)

80.0

82.5

85.0

87.5

90.0

92.5

95.0

97.5

100.0

R
ec

al
l (

%
)

Vexless_50th
VM_50th
Vexless_95th
VM_95th
Vexless_99th
VM_99th

Fig. 8. The Percentile Search Latency Comparison of Vexless and Multi-threaded VM on Deep10M

Proc. ACM Manag. Data, Vol. 2, No. 3 (SIGMOD), Article 187. Publication date: June 2024.

187:18 Yongye Su, Yinqi Sun, Minjia Zhang, and Jianguo Wang

0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45
Latency (msec)

80.0

82.5

85.0

87.5

90.0

92.5

95.0

97.5

100.0
R

ec
al

l @
10

(%
)

Search 100%
Search 75%
Search 50%
Search 25%
Whole index

(a) Partition Search Strategy Analysis on DEEP10M

0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45
Latency (msec)

80.0

82.5

85.0

87.5

90.0

92.5

95.0

97.5

100.0

R
ec

al
l @

10
 (%

)

Redundancy 15%
Redundancy 10%
Redundancy 5%
Redundancy 0%
Whole index

(b) Indexing Redundancy Analysis on DEEP10M

Fig. 9. The Search Strategy and Redundancy Analysis in Vexless

4.4 Ablation Study
Next, we will justify each part of our design by conducting related performance evaluations on

the DEEP10M dataset. We also analyze the cost breakdown of different components of Vexless,
including the techniques in indexing, vector search, communication, and cold-start optimization
respecting different query distributions and diverse datasets.

Our search strategy is observed with search performance in distinct function activation levels
illustrated in Figure 9a. We distributed the DEEP10M data index on four partitions, then conducted
distributed vector searches by dispatching the search task to the top-𝑝 (𝑝 = 100%, 75%, 50%, 25%)
closest index partitions and activating them for one query search. The “Whole Index” represents
the baseline where the HNSW Index is built as a whole. By searching more index partitions, the
performance gets better due to larger search scopes. Moreover, we discovered that compared with
searching all the partitions, searching the top-75% closest index partitions not only saves a quarter
of the search cost but also has a comparable search performance with the former top-100% search
strategy. This observation brings us more reference for setting distance thresholds when selecting
search partitions.

On the other hand, in our vector data sharding strategy, we observed that some vectors, as men-
tioned in Section 3.2 which we term “boundary vectors” or “boundary points”, were at nearly equal
distances from multiple centroids. After managing to solve such a problem, with variable memory
redundancy ratios, Vexless showcased search efficiencies on datasets such as DEEP10M Figure
9b. The percentage in the figure legend represents the overall memory consumption increased by
introducing redundant boundary vectors when indexing the same data range.

With indexing that trades off redundancy for search performance, we looked into the indexing
and activation threshold in the sharding and searching phase, our tests show that sharding with
diverse redundant options that have different distance thresholds would also have great effects on
the search efficiency, partly because of affecting the activation ratio of serverless cloud functions
and partly because of the boundary points was more included in the indexing and further search.
Thus, establishing the right activation threshold is important. Our observations of Vexless offer a
flexible performance range with diverse threshold settings in Figure 10, the figure displays how
efficiency changes as the distance to cluster centroids varies. Clusters are selected for search only
if the distance between the query vector and centroid is below the specified threshold. In the
real practice of vector search on DEEP10M, we choose the threshold as T=0.95, with the memory
footprint only increasing about ten percent more than the whole HNSW index.

4.5 Additional Experiments

Proc. ACM Manag. Data, Vol. 2, No. 3 (SIGMOD), Article 187. Publication date: June 2024.

Vexless: A Serverless Vector Data Management System Using Cloud Functions 187:19

0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45
Latency (msec)

80.0

82.5

85.0

87.5

90.0

92.5

95.0

97.5

100.0

R
ec

al
l @

10
(%

)
Search T = 1
Search T = 0.95
Search T = 0.90
Search T = 0.85

Fig. 10. Search Efficiency Evaluation Under Varying Distance Thresholds

(a) High Bursty (b) Medium Bursty

(c) Low Bursty (d) AnalyticDB Workload [70]

(e) Twitter Workload [75]

AnalyticDB-V Twitter High Mid Low
Workload

0

50

100

150

200

C
os

t (
U

SD
) VM cost

Vexless cost

(f) Cost results

Fig. 11. Results on Bursty and Real Workloads

Proc. ACM Manag. Data, Vol. 2, No. 3 (SIGMOD), Article 187. Publication date: June 2024.

187:20 Yongye Su, Yinqi Sun, Minjia Zhang, and Jianguo Wang

3 min 2 min 1 min 30 sec
Idle Time Between Query Workload

0

50

100

150

200

C
os

t (
U

SD
)

VM cost
Vexless cost

Fig. 12. Evaluating the Impact of Sparseness (by Controlling Idle Time)

4.5.1 Experiments on Bursty Workloads. In this experiment, we evaluate the impact of burstiness.
We generated three synthetic workloads with low, medium, and high levels of burstiness in Fig-
ure 11a, 11b, 11c. We explained the data generator in Sec. 4.2. The experimental results can be
found in Figure 11f. It shows that cloud functions achieve lower costs on medium- and high-burst
workloads (given similar recall and performance), as expected.

4.5.2 Experiments on RealWorkloads. In this experiment, we added two real-world workloads pre-
sented in [70] and [75]. As those workloads are not publicly available, we generated twoworkloads
using our workload generator (Sec. 4.2), see Figure 11d and 11e. We have verified that the query
patterns of our generated workloads are consistent with those of the two real-world workloads.
The experimental results can be found in Figure 11f. It shows that on real workloads, cloud
functions win because the workloads are indeed bursty and sparse.

4.5.3 Evaluating the Impact of Sparseness. Recall that in Figure 7, we issued queries in a periodic
pattern of 5 minutes active followed by 2 minutes idle. In this experiment, we varied the idle time.
Figure 12 shows the results on DEEP10M dataset (assuming the query rate is 4000qps). It shows
that when the idle time exceeds 2 minutes, cloud functions are more cost-effective.

4.5.4 Experiments on ContinuousWorkloads. We conducted a new experiment to evaluate the cost
of continuously issuing queries at different qps rates, see the results in Figure 13. It shows that for
the Deep10M dataset, as long as the continuous query rate is below 1000 qps (the query rate of a
moderate website [19]), cloud functions win.

1000 1200 1400 1600 1800 2000
Queries Per Second (QPS)

0

50

100

150

200

C
os

t (
U

SD
)

(a) SIFT10M

400 600 800 1000 1200
Queries Per Second (QPS)

0

25

50

75

100

125

150

C
os

t (
U

SD
)

VM cost
Vexless cost

(b) Deep10M

180 200 220 240
Queries Per Second (QPS)

0

20

40

60

80

100

120

C
os

t (
U

SD
)

(c) GIST1M

Fig. 13. Results on Continuous Workloads

Proc. ACM Manag. Data, Vol. 2, No. 3 (SIGMOD), Article 187. Publication date: June 2024.

Vexless: A Serverless Vector Data Management System Using Cloud Functions 187:21

Table 2. Re-ranking Latency for Varying k

k 1 10 50 100 1000
Re-ranking (μs) 2.24 2.32 4.77 9.53 85.83

4.5.5 Varying k. Next, we evaluate the impact of k in top-k vector search. In Figure 14, which
shows different k values corresponding to diverse search scenarios, the search performance and
cost comparison results indicate that Vexless has a better cost and performance advantage in all
aspects. As k grows, the search accuracy leads to an even larger performance gap and a significant
cost advantage compared to the baseline.

Furthermore, we also added a new experiment to show the re-ranking time for different k values,
as shown in Table 2. It shows that the re-ranking cost is in the order of microseconds (while vector
search is in the order of milliseconds).

4.5.6 Case Study. In this experiment, we tested Vexless in an end-to-end machine learning appli-
cation. We chose Image Search as it is a popular application for vector search [68].

Image Search consists of two steps in online query processing. First, we convert the query image
𝑆 into a feature vector 𝑉𝑆 using a pre-trained neural network. Second, we search this vector 𝑉𝑆
in a vector database R. This database stores feature vectors corresponding to images in a web-
scale repository, potentially containing billions of images. We obtain the vector database R offline.
Figure 15 shows this entire workflow.

For the embedding model, we chose MobileNetV3 [61], known for its high-quality embeddings
and high throughput. We run this model on a server equipped with Tensorflow to encode the
dataset in batches. The server includes an Intel Xeon Platinum 8364 CPU and two NVIDIA A40
GPUs.We selected a pre-processed subset of ImageNet21 [33] with 1million images for the dataset.
The images are embedded into 1000-dimensional vectors, and we use HNSW as the vector index.

The result shows that the image embedding time (step 1 in Figure 15) is around 0.18ms per im-
age on average, while the vector search (step 2 in Figure 15) takes 2ms. The vector search task
costs 10 times more than image embedding and is clearly the bottleneck in this application. This is
because the embedding task uses a static model and is highly parallelizable since each embedding
process is independent of the others, and therefore, it is often accelerated with specialized hard-
ware such as GPUs, TPUs, and FPGAs. This further confirms the necessity of optimizing vector
search performance in large-scale vector search applications.

5 RELATEDWORK
While we have covered many related techniques in Sec. 2 and Sec. 3, in this section, we briefly

emphasize that there are two lines of work relevant to this paper. First, there are many vector
databases, such as Milvus [68], Pinecone [16], Vespa [18], and pgvector [15]. For a survey, refer to
[56, 57]. However, these databases are not built using cloud functions. Although Pinecone recently
released a serverless version of a vector database, it does not utilize cloud functions. Another line
of work involves leveraging cloud functions for building data systems, such as data analytics [28,
55, 59], and machine learning [67, 71]. However, they do not focus on building vector databases,
which is the main focus of this work.

6 CONCLUSION
In this paper, we presented Vexless, the first vector database built for cloud functions with the

benefits of high elasticity, low operational cost, and fine-grained billing model. Experiments show

Proc. ACM Manag. Data, Vol. 2, No. 3 (SIGMOD), Article 187. Publication date: June 2024.

187:22 Yongye Su, Yinqi Sun, Minjia Zhang, and Jianguo Wang

Vexless VM Naïve CF
0

50

100

150

200

C
os

t(
U

SD
)

(a) Search Cost at k = 1

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45
Latency (msec)

60

70

80

90

100

R
ec

al
l (

%
) Vexless

VM
Naïve CF

(b) Recall@1

Vexless VM Naïve CF
0

50

100

150

200

C
os

t(
U

SD
)

(c) Search Cost at k = 5

0.0 0.1 0.2 0.3 0.4 0.5 0.6
Latency (msec)

60

70

80

90

100

R
ec

al
l (

%
) @

10

Vexless
VM
Naïve CF

(d) Recall@5

Vexless VM Naïve CF
0

50

100

150

200

C
os

t(
U

SD
)

(e) Search Cost at k = 50

0.0 0.1 0.2 0.3 0.4 0.5 0.6
Latency (msec)

60

70

80

90

100

R
ec

al
l (

%
) @

50

Vexless
VM
Naïve CF

(f) Recall@50

Vexless VM Naïve CF
0

50

100

150

200

C
os

t(
U

SD
)

(g) Search Cost at k = 100

0.2 0.3 0.4 0.5 0.6 0.7 0.8
Latency (msec)

60

70

80

90

100

R
ec

al
l (

%
) @

10
0

Vexless
VM
Naïve CF

(h) Recall@100

Fig. 14. The Monthly Cost and Search Performance of Three Implementations under Varying k

Proc. ACM Manag. Data, Vol. 2, No. 3 (SIGMOD), Article 187. Publication date: June 2024.

Vexless: A Serverless Vector Data Management System Using Cloud Functions 187:23

Batch Image to Vector Embedding
Vector Indexing

Image Repository

. . .

Step2: Vector Search

Image Repository

. . .
Step1: Image to Vector EmbeddingQuery Image

User Image IDs

Search Results

Feature Vector

Feature Vectors

CDN

Offline Phase

Online Phase

Fig. 15. Workflow of an Image Search System

that Vexless achieves better cost-efficiency on sparse and bursty workloads than traditional VM-
based implementation. Vexless is also flexible such that different index methods including IVF and
LSH can be used, and our design can also be generalized to other cloud platforms such as AWS
and GCP.

ACKNOWLEDGEMENTS
JianguoWang acknowledges the support of the National Science Foundation under Grant Num-

ber 2337806. We are also grateful for the generous support from Microsoft on Azure credits.

REFERENCES
[1] [n. d.]. Alibaba Cloud: Manage Stateful Asynchronous Invocations. https://www.alibabacloud.com/help/en/fc/develo

per-reference/manage-stateful-asynchronous-invocations.
[2] [n. d.]. Alibaba Cloud: Message Service (MNS). https://www.alibabacloud.com/product/message-service.
[3] [n. d.]. Amazon Simple Queue Service. https://aws.amazon.com/sqs.
[4] [n. d.]. AWS Lambda - Serverless Compute - Amazon Web Services. https://aws.amazon.com/lambda.
[5] [n. d.]. AWS Step Functions. https://aws.amazon.com/step-functions.
[6] [n. d.]. Azure Functions - Serverless Code. https://azure.microsoft.com/services/functions.
[7] [n. d.]. Azure Functions Scale and Hosting. https://learn.microsoft.com/azure/azure-functions/functions-scale.
[8] [n. d.]. Benchmarks for Billion-Scale Similarity Search. https://research.yandex.com/blog/benchmarks-for-billion-sc

ale-similarity-search.
[9] [n. d.]. Cloud Functions: Serverless Computing, Google Cloud. https://cloud.google.com/functions.

[10] [n. d.]. Cold Starts in Azure Functions. https://mikhail.io/serverless/coldstarts/azure.
[11] [n. d.]. Compute Optimized F Series - Azure Virtual Machines. https://learn.microsoft.com/en-us/azure/virtual-mach

ines/sizes-compute.
[12] [n. d.]. Google Cloud Pub/Sub. https://cloud.google.com/pubsub.
[13] [n. d.]. Microsoft Azure Durable Functions. https://learn.microsoft.com/azure/azure-functions/durable/durable-funct

ions-overview.
[14] [n. d.]. Microsoft Azure Queue Storage. https://learn.microsoft.com/azure/storage/queues/storage-queues-introducti

on.
[15] [n. d.]. pgvector. https://github.com/pgvector/pgvector.
[16] [n. d.]. Pinecone: Vector Database for Vector Search. https://www.pinecone.io.
[17] [n. d.]. Scalability and Performance Targets for Blob storage. https://learn.microsoft.com/azure/storage/blobs/scalabi

lity-targets.
[18] [n. d.]. Vespa (https://vespa.ai/).
[19] [n. d.]. What’s the “Average” Requests Per Second for a Production Web Application? https://stackoverflow.com/que

stions/373098/whats-the-average-requests-per-second-for-a-production-web-application.

Proc. ACM Manag. Data, Vol. 2, No. 3 (SIGMOD), Article 187. Publication date: June 2024.

https://www.nsf.gov/awardsearch/showAward?AWD_ID=2337806
https://www.alibabacloud.com/help/en/fc/developer-reference/manage-stateful-asynchronous-invocations
https://www.alibabacloud.com/help/en/fc/developer-reference/manage-stateful-asynchronous-invocations
https://www.alibabacloud.com/product/message-service
https://aws.amazon.com/sqs
https://aws.amazon.com/lambda
https://aws.amazon.com/step-functions
https://azure.microsoft.com/services/functions
https://learn.microsoft.com/azure/azure-functions/functions-scale
https://research.yandex.com/blog/benchmarks-for-billion-scale-similarity-search
https://research.yandex.com/blog/benchmarks-for-billion-scale-similarity-search
https://cloud.google.com/functions
https://mikhail.io/serverless/coldstarts/azure
https://learn.microsoft.com/en-us/azure/virtual-machines/sizes-compute
https://learn.microsoft.com/en-us/azure/virtual-machines/sizes-compute
https://cloud.google.com/pubsub
https://learn.microsoft.com/azure/azure-functions/durable/durable-functions-overview
https://learn.microsoft.com/azure/azure-functions/durable/durable-functions-overview
https://learn.microsoft.com/azure/storage/queues/storage-queues-introduction
https://learn.microsoft.com/azure/storage/queues/storage-queues-introduction
https://github.com/pgvector/pgvector
https://www.pinecone.io
https://learn.microsoft.com/azure/storage/blobs/scalability-targets
https://learn.microsoft.com/azure/storage/blobs/scalability-targets
https://vespa.ai/
https://stackoverflow.com/questions/373098/whats-the-average-requests-per-second-for-a-production-web-application
https://stackoverflow.com/questions/373098/whats-the-average-requests-per-second-for-a-production-web-application

187:24 Yongye Su, Yinqi Sun, Minjia Zhang, and Jianguo Wang

[20] 2023. LLM Limitations. (https://zilliz.com/use-cases/llm-retrieval-augmented-generation).
[21] 2023. Solving ChatGPT Hallucinations With Vector Embeddings https://www.youtube.com/watch?v=FUgp4oaxj-M.
[22] Ryan Prescott Adams, Iain Murray, and David JC MacKay. 2009. Tractable Nonparametric Bayesian Inference in

Poisson Processes with Gaussian Process Intensities. In International Conference on Machine Learning (ICML). 9–16.
[23] Adil Akhter, Marios Fragkoulis, and Asterios Katsifodimos. 2019. Stateful Functions as a Service in Action. Proceedings

of the VLDB Endowment (PVLDB) 12, 12 (2019), 1890–1893.
[24] Alexandr Andoni and Piotr Indyk. 2008. Near-Optimal Hashing Algorithms for Approximate Nearest Neighbor in

High Dimensions. Commun. ACM 51, 1 (2008), 117–122.
[25] Artem Babenko and Victor Lempitsky. 2016. Efficient Indexing of Billion-Scale Datasets of Deep Descriptors. In IEEE

Conference on Computer Vision and Pattern Recognition (CVPR). 2055–2063.
[26] Oren Barkan and Noam Koenigstein. 2016. Item2Vec: Neural Item Embedding for Collaborative Filtering. In Interna-

tional Workshop on Machine Learning for Signal Processing (MLSP). 1–6.
[27] Vandy Berten, Joël Goossens, and Emmanuel Jeannot. 2006. On the Distribution of Sequential Jobs in Random Bro-

kering for Heterogeneous Computational Grids. IEEE Transactions on Parallel and Distributed Systems 17, 2 (2006),
113–124.

[28] Haoqiong Bian, Tiannan Sha, and Anastasia Ailamaki. 2023. Using Cloud Functions as Accelerator for Elastic Data
Analytics. Proceedings of the ACM on Management of Data (PACMMOD) 1, 2 (2023), 161:1–161:27.

[29] Paul S Bradley, Kristin P Bennett, and Ayhan Demiriz. 2000. Constrained K-means Clustering. Microsoft Research,
Redmond 20, 0 (2000), 0.

[30] Mudashiru Busari and Carey Williamson. 2002. ProWGen: a Synthetic Workload Generation Tool for Simulation
Evaluation of Web Proxy Caches. Computer Networks 38, 6 (2002), 779–794.

[31] Qi Chen, Haidong Wang, Mingqin Li, Gang Ren, Scarlett Li, Jeffery Zhu, Jason Li, Chuanjie Liu, Lintao Zhang, and
Jingdong Wang. 2018. SPTAG: A Library for Fast Approximate Nearest Neighbor Search. https://github.com/Microsoft/S
PTAG.

[32] Qi Chen, Bing Zhao, Haidong Wang, Mingqin Li, Chuanjie Liu, Zengzhong Li, Mao Yang, and Jingdong Wang. 2021.
SPANN: Highly-efficient Billion-scale Approximate Nearest Neighborhood Search. In Proceedings of the International
Conference on Neural Information Processing Systems (NeurIPS). 5199–5212.

[33] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. 2009. Imagenet: A Large-Scale Hierarchical Image
Database. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 248–255.

[34] Zhaoxu Ding, Guoqiang Zhong, Xianping Qin, Qingyang Li, Zhenlin Fan, Zhaoyang Deng, Xiao Ling, andWei Xiang.
2024. MF-Net: Multi-frequency Intrusion Detection Network for Internet traffic Data. Pattern Recognition 146 (2024),
109999.

[35] Matthijs Douze, Hervé Jégou, Harsimrat Sandhawalia, Laurent Amsaleg, and Cordelia Schmid. 2009. Evaluation of
GIST Descriptors for Web-Scale Image Search. In Proceedings of the ACM International Conference on Image and Video
Retrieval (CIVR). 1–8.

[36] Thomas Eriksen and Naveed ur Rehman. 2023. Data-driven Nonstationary Signal Decomposition Approaches: a
Comparative Analysis. Scientific Reports 13, 1 (2023), 1798.

[37] Hakan Ferhatosmanoglu, Ertem Tuncel, Divyakant Agrawal, and Amr El Abbadi. 2006. High Dimensional Nearest
Neighbor Searching. Information Systems 31, 6 (2006), 512–540.

[38] Cong Fu, Chao Xiang, Changxu Wang, and Deng Cai. 2019. Fast Approximate Nearest Neighbor Search With The
Navigating Spreading-out Graph. Proceedings of the VLDB Endowment (PVLDB) 12, 5 (2019), 461–474.

[39] Aristides Gionis, Piotr Indyk, and Rajeev Motwani. 1999. Similarity Search in High Dimensions via Hashing. In
International Conference on Very Large Data Bases (VLDB). 518–529.

[40] Hervé Jégou, Matthijs Douze, and Cordelia Schmid. 2011. Product Quantization for Nearest Neighbor Search. IEEE
Transactions on Pattern Analysis and Machine Intelligence (TPAMI) 33, 1 (2011), 117–128.

[41] Dingde Jiang, Zuyao Zhao, Zhengzheng Xu, Chunping Yao, and Hongwei Xu. 2014. How to Reconstruct End-to-end
Traffic Based on Time-frequency Analysis and Artificial Neural Network. AEU-International Journal of Electronics
and Communications 68, 10 (2014), 915–925.

[42] Jeff Johnson, Matthijs Douze, and Hervé Jégou. 2019. Billion-Scale Similarity Search with GPUs. IEEE Transactions
on Big Data 7, 3 (2019), 535–547.

[43] Eric Jonas, Johann Schleier-Smith, Vikram Sreekanti, Chia-che Tsai, Anurag Khandelwal, Qifan Pu, Vaishaal Shankar,
Joao Carreira, Karl Krauth, Neeraja Jayant Yadwadkar, Joseph E. Gonzalez, Raluca Ada Popa, Ion Stoica, and David A.
Patterson. 2019. Cloud Programming Simplified: A Berkeley View on Serverless Computing. CoRR abs/1902.03383
(2019).

[44] Quoc V. Le and Tomas Mikolov. 2014. Distributed Representations of Sentences and Documents. In International
Conference on Machine Learning (ICML). 1188–1196.

Proc. ACM Manag. Data, Vol. 2, No. 3 (SIGMOD), Article 187. Publication date: June 2024.

https://zilliz.com/use-cases/llm-retrieval-augmented-generation
https://www.youtube.com/watch?v=FUgp4oaxj-M
https://github.com/Microsoft/SPTAG
https://github.com/Microsoft/SPTAG

Vexless: A Serverless Vector Data Management System Using Cloud Functions 187:25

[45] Conglong Li, Minjia Zhang, David G. Andersen, and Yuxiong He. 2020. Improving Approximate Nearest Neighbor
Search Through Learned Adaptive Early Termination. In Proceedings of the International Conference on Management
of Data (SIGMOD). 2539–2554.

[46] Yuliang Li, Jianguo Wang, Benjamin S. Pullman, Nuno Bandeira, and Yannis Papakonstantinou. 2019. Index-Based,
High-Dimensional, Cosine Threshold Querying with Optimality Guarantees. In International Conference on Database
Theory (ICDT), Vol. 127. 11:1–11:20.

[47] Xuanzhe Liu, Jinfeng Wen, Zhenpeng Chen, Ding Li, Junkai Chen, Yi Liu, Haoyu Wang, and Xin Jin. 2023. FaaSLight:
General Application-Level Cold-Start Latency Optimization for Function-as-a-Service in Serverless Computing. ACM
Transactions on Software Engineering and Methodology (TOSEM) 32, 5 (2023).

[48] Kejing Lu, Hongya Wang, Wei Wang, and Mineichi Kudo. 2020. VHP: Approximate Nearest Neighbor Search via
Virtual Hypersphere Partitioning. Proceedings of the VLDB Endowment (PVLDB) 13, 9 (2020), 1443–1455.

[49] Qin Lv, William Josephson, Zhe Wang, Moses Charikar, and Kai Li. 2007. Multi-Probe LSH: Efficient Indexing for
High-Dimensional Similarity Search. In Proceedings of the VLDB Endowment (PVLDB). 950–961.

[50] Yury A. Malkov and Dmitry A. Yashunin. 2018. Efficient and Robust Approximate Nearest Neighbor Search Using
Hierarchical Navigable Small World Graphs. IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI)
42, 4 (2018), 824–836.

[51] R. B. MARIMONT and M. B. SHAPIRO. 1979. Nearest Neighbour Searches and the Curse of Dimensionality. IMA
Journal of Applied Mathematics 24, 1 (1979), 59–70.

[52] Erik Bernhardsson Martin Aumueller. 2023. ANN-Benchmarks. https://ann-benchmarks.com.
[53] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013. Efficient Estimation of Word Representations in

Vector Space. In International Conference on Learning Representations (ICLR).
[54] Diego Montes, Juan A Añel, David CH Wallom, Peter Uhe, Pablo V Caderno, and Tomás F Pena. 2020. Cloud Com-

puting for Climate Modelling: Evaluation, Challenges and Benefits. MDPI Computers 9, 2 (2020), 52.
[55] Ingo Müller, Renato Marroquin, and Gustavo Alonso. 2020. Lambada: Interactive Data Analytics on Cold Data Using

Serverless Cloud Infrastructure. In Proceedings of the International Conference on Management of Data (SIGMOD).
115–130.

[56] James Pan, JianguoWang, and Guoliang Li. 2024. Vector Database Management Techniques and Systems. In Compan-
ion of the International Conference on Management of Data (SIGMOD).

[57] James Jie Pan, Jianguo Wang, and Guoliang Li. 2023. Survey of Vector Database Management Systems. CoRR
abs/2310.14021 (2023).

[58] Zhen Peng, Minjia Zhang, Kai Li, Ruoming Jin, and Bin Ren. 2023. iQAN: Fast and Accurate Vector Search with
Efficient Intra-Query Parallelism onMulti-Core Architectures. In Proceedings of the ACM SIGPLANAnnual Symposium
on Principles and Practice of Parallel Programming (PPoPP). 313–328.

[59] Matthew Perron, Raul Castro Fernandez, David DeWitt, and Samuel Madden. 2020. Starling: A ScalableQuery Engine
on Cloud Functions. In Proceedings of the International Conference on Management of Data (SIGMOD). 131–141.

[60] Florin Pop, Ciprian Dobre, Valentin Cristea, and Nik Bessis. 2013. Scheduling of Sporadic Tasks with Deadline Con-
strains in Cloud Environments. In International Conference on Advanced Information Networking and Applications
(AINA). 764–771.

[61] Siying Qian, Chenran Ning, and Yuepeng Hu. 2021. MobileNetV3 for Image Classification. In International Conference
on Big Data, Artificial Intelligence and Internet of Things Engineering (ICBAIE). 490–497.

[62] Rudolf H Riedi, Matthew S Crouse, Vinay J Ribeiro, and Richard G Baraniuk. 1999. A Multifractal Wavelet Model with
Application to Network Traffic. IEEE Transactions on Information Theory 45, 3 (1999), 992–1018.

[63] Chanop Silpa-Anan and Richard I. Hartley. 2008. Optimised KD-trees for Fast Image Descriptor Matching. In IEEE
Conference on Computer Vision and Pattern Recognition (CVPR). 1–8.

[64] Paulo Silva, Daniel Fireman, and Thiago Emmanuel Pereira. 2020. Prebaking Functions to Warm the Serverless Cold
Start. In Proceedings of the International Middleware Conference. 1–13.

[65] Suhas Jayaram Subramanya, Fnu Devvrit, Harsha Vardhan Simhadri, Ravishankar Krishnaswamy, and Rohan
Kadekodi. 2019. Rand-NSG: Fast Accurate Billion-point Nearest Neighbor Search on a Single Node. In Annual Confer-
ence on Neural Information Processing Systems (NeurIPS). 13748–13758.

[66] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov, Dumitru Erhan, Vincent
Vanhoucke, and Andrew Rabinovich. 2015. Going Deeper with Convolutions. In IEEE Conference on Computer Vision
and Pattern Recognition (CVPR). 1–9.

[67] John Thorpe, Yifan Qiao, Jonathan Eyolfson, Shen Teng, Guanzhou Hu, Zhihao Jia, Jinliang Wei, Keval Vora, Ravi
Netravali, Miryung Kim, and Guoqing Harry Xu. 2021. Dorylus: Affordable, Scalable, and Accurate GNN Training
with Distributed CPU Servers and Serverless Threads. In USENIX Symposium on Operating Systems Design and Imple-
mentation (OSDI). 495–514.

Proc. ACM Manag. Data, Vol. 2, No. 3 (SIGMOD), Article 187. Publication date: June 2024.

https://ann-benchmarks.com

187:26 Yongye Su, Yinqi Sun, Minjia Zhang, and Jianguo Wang

[68] Jianguo Wang, Xiaomeng Yi, Rentong Guo, Hai Jin, Peng Xu, Shengjun Li, Xiangyu Wang, Xiangzhou Guo, Cheng-
ming Li, Xiaohai Xu, Kun Yu, Yuxing Yuan, Yinghao Zou, Jiquan Long, Yudong Cai, Zhenxiang Li, Zhifeng Zhang,
Yihua Mo, Jun Gu, Ruiyi Jiang, Yi Wei, and Charles Xie. 2021. Milvus: A Purpose-Built Vector Data Management
System. In Proceedings of the International Conference on Management of Data (SIGMOD). 2614–2627.

[69] LiangWang, Mengyuan Li, Yinqian Zhang,Thomas Ristenpart, and Michael Swift. 2018. Peeking Behind the Curtains
of Serverless Platforms. In USENIX Annual Technical Conference (USENIX ATC). 133–146.

[70] Chuangxian Wei, Bin Wu, Sheng Wang, Renjie Lou, Chaoqun Zhan, Feifei Li, and Yuanzhe Cai. 2020. AnalyticDB-V:
A Hybrid Analytical Engine Towards Query Fusion for Structured and Unstructured Data. Proceedings of the VLDB
Endowment (PVLDB) 13, 12 (2020), 3152–3165.

[71] YunchengWu, Tien TuanAnhDinh, GuoyuHu,Meihui Zhang, YeowMeng Chee, and Beng Chin Ooi. 2022. Serverless
Data Science - Are We There Yet? A Case Study of Model Serving. In Proceedings of the International Conference on
Management of Data (SIGMOD). 1866–1875.

[72] Huafeng Xi, Jianfeng Zhan, Zhen Jia, Xuehai Hong, Lei Wang, Lixin Zhang, Ninghui Sun, and Gang Lu. 2011. Charac-
terization of Real Workloads of Web Search Engines. In Proceedings of the IEEE International Symposium on Workload
Characterization (IISWC). 15–25.

[73] ZhengjunXu, Haitao Zhang, XinGeng, QiongWu, andHuadongMa. 2019. Adaptive Function LaunchingAcceleration
in Serverless Computing Platforms. In IEEE International Conference on Parallel and Distributed Systems (ICPADS). 9–
16.

[74] Yunan Zhang, Shige Liu, and Jianguo Wang. 2024. Are There Fundamental Limitations in Supporting Vector Data
Management in Relational Databases? A Case Study of PostgreSQL. In International Conference on Data Engineering
(ICDE).

[75] Zhe Zhao andQiaozhuMei. 2013. Questions aboutQuestions: An Empirical Analysis of Information Needs on Twitter.
In International World Wide Web Conference (WWW). 1545–1556.

Received October 2023; revised January 2024; accepted March 2024

Proc. ACM Manag. Data, Vol. 2, No. 3 (SIGMOD), Article 187. Publication date: June 2024.

	Abstract
	1 Introduction
	2 Background and Target Workloads
	2.1 Vector Similarity Search
	2.2 Cloud Functions
	2.3 Target Workloads

	3 System design
	3.1 Overview
	3.2 Purpose-Built Sharding-based Index and Search Strategy
	3.3 Optimized Communication Mechanism
	3.4 Cold Start Reduction
	3.5 Generalizability

	4 Experiments
	4.1 Experiment Setup
	4.2 Workload Generator
	4.3 Overall Results
	4.4 Ablation Study
	4.5 Additional Experiments

	5 Related Work
	6 Conclusion
	References

