
Revisiting Stress Majorization as a Unified Framework for
Interactive Constrained Graph Visualization

Yunhai Wang, Yanyan Wang, Yinqi Sun, Lifeng Zhu, Kecheng Lu
Chi-Wing Fu, Michael Sedlmair, Oliver Deussen, and Baoquan Chen

Fig. 1. Our unified framework for constrained graph visualization allows us to create graph layouts with various constraints: a) cluster
non-overlap (CN); b) CN + circle constraint (CC); c) CN + star constraint (SC); and d) CN + CC + SC + edge direction constraint.

Abstract—We present an improved stress majorization method that incorporates various constraints, including directional constraints
without the necessity of solving a constraint optimization problem. This is achieved by reformulating the stress function to impose
constraints on both the edge vectors and lengths instead of just on the edge lengths (node distances). This is a unified framework for
both constrained and unconstrained graph visualizations, where we can model most existing layout constraints, as well as develop
new ones such as the star shapes and cluster separation constraints within stress majorization. This improvement also allows us to
parallelize computation with an efficient GPU conjugant gradient solver, which yields fast and stable solutions, even for large graphs.
As a result, we allow the constraint-based exploration of large graphs with 10K nodes – an approach which previous methods cannot
support.

Index Terms—Graph visualization, stress majorization, constraints

1 INTRODUCTION

Graphs are fundamental representations for a wide variety of data, such
as transport networks, social networks, and molecular interactions. A
very popular method for automatically laying out nodes and edges of a
graph to create a planar visualization, while maintaining its structure, is
the stress model [28]. This model aims to minimize the sum of squared
distance differences between pairs of nodes in the graph when laying
out nodes in the visualization. Only satisfying such distance constraints,
however, might not generate a user-desired layout for an effective visu-
alization, since various application-specific layout requirements [13]
including non-overlapping of nodes and directed edges between nodes
should be maintained. Ideally, the mental map of the user should be
preserved during the evolution of a graph layout [1, 34].

This motivated the development of constrained graph layout meth-

• Y.H. Wang, B. Chen, Y.Y. Wang, Y. Sun, and K. Lu are with Shandong
University. Email: {wang.yh, baoquan}@sdu.edu.cn, {yanyanwang93,
sunyinqi0508, lukecheng0407}@gmail.com.

• L. Zhu is with Southeast University. E-mail: lfzhulf@gmail.com.
• C.-W. Fu is with the Chinese University of Hong Kong. E-mail:

cwfu@cse.cuhk.edu.hk.
• M. Sedlmair is with University of Vienna, Austria. E-mail:

michael.sedlmair@univie.ac.at.
• O. Deussen is with Konstanz University and VCC SIAT, China. E-mail:

oliver.deussen@uni-konstanz.de.
• Y.H. Wang and Y.Y. Wang are joint first authors.

Manuscript received xx xxx. 201x; accepted xx xxx. 201x. Date of Publication
xx xxx. 201x; date of current version xx xxx. 201x. For information on
obtaining reprints of this article, please send e-mail to: reprints@ieee.org.
Digital Object Identifier: xx.xxxx/TVCG.201x.xxxxxxx

ods that enable users to define user-specific constraints [25, 39]. Often,
this is achieved by adapting a traditional graph layout optimization to
a constrained case. Taking the stress function as the objective, stress
majorization handles such constraints by projecting the node positions
resulted from an unconstrained optimization to feasible positions that
satisfy the constraints [13, 17]. Later, Dwyer et al. [11] proposed a
fast scalable method with an unconstrained graph layout as input. The
method’s applicability is demonstrated for interactive graph naviga-
tion [15] and diagram creation [16].

Despite their benefits, existing constrained graph layout methods
have three major limitations that hamper their applicability. First, they
attempt to satisfy hard constraints, which could lead to high stress
values that are not preferred by users [14]. Second, they fail to support
several aesthetic criteria [36, 37], e.g., minimizing the edge crossings
and maximizing the layout symmetry. These criteria are useful for
effective examination of local structures, but they generally require a
dynamic update of the orientation constraints, which is not supported
by existing methods. Finally, due to high computational costs, existing
methods work well only for selected small sub-graphs [15], but not for
larger graphs beyond hundreds of nodes. The main reason for this is that
users often need a large amount of constraints to achieve a high-quality
layout for larger graphs; this requires a rather expensive constrained
optimization, which cannot be solved efficiently by existing methods.

The above issues motivate us to revisit an unconstrained stress model,
which can be efficiently solved by stress majorization. In short, we
revisit the mathematical model of stress majorization and reformulate
it in terms of a vector form, where we minimize the sum of squared
differences between the vectors that connect pairs of nodes in the planar
visualization, referred to as edge vectors. By default, the magnitude
of an edge vector is the ideal distance1 between the associated pair

1The ideal distance between two nodes in a graph is generally defined as the

of nodes. This reformulation introduces auxiliary variables edge di-
rections, which provide us with an alternative interpretation of stress
majorization and enable us to further model various kinds of user con-
straints.

Based on our reformulation, we show that stress majorization can
be developed into a unified framework for both constrained and uncon-
strained graph visualizations. Hence, compared to previous constrained
graph layout methods [11, 13, 17], our framework can handle any con-
straint that can be modeled using edge vectors. This capability allows
us to model almost all existing layout constraints and potentially to cre-
ate new ones. These constraints can be categorized into three classes: i)
direct constraints explicitly specify the edge vectors; ii) metrics-based
constraints require an update of the edge vectors based on the applied
aesthetic criteria such as minimizing the edge crossings and overlap-
ping between clusters/nodes; and iii) shape-based constraints enforce a
local structure in the layout to follow a certain shape by means of shape
matching. These constraints are helpful for merging of small graph lay-
outs [51] and incremental layouts for dynamic graph visualization [8].
Moreover, we can combine multiple constraints with different edge
weights to relieve the conflicts between them.

Furthermore, our new formulation enables us to accelerate stress
majorization using the GPU. This allows users to interactively explore
constrained layouts, even for very large graphs with 10K nodes and
more, and to examine sub-graphs of interest with various constraints.
Users can start from an unconstrained layout, select a sub-graph by
using a lasso, and explore its structures by imposing constraints to
the layout. Once this is done, the sub-graph evolves according to the
constraints while the rest of the graph is kept as stable as possible. The
sub-graph with constraints can be shown in a detailed view to hide the
influence of the unselected structures.

In summary, the main contributions of this paper are:

• we revisit stress majorization and show that it can be reformulated
into a unified framework for both constrained and unconstrained
graph visualizations;

• we devise various constraints, including the direct constraints,
metrics-based constraints and shape-based constraints, to effec-
tively explore the structures in sub-graphs of interest; and

• we present an interactive constrained graph exploration interface
supported by GPU-accelerated stress majorization; our interface
enables users to interactively explore graph layouts of 10K nodes
with various constraints.

2 RELATED WORK

2.1 Constrained Graph Layout
Many graph layout algorithms have been proposed in the past, see [44],
among which the force-directed approach is the most popular. This
approach is built upon a spring-electrical model [18, 21]; it treats edges
as springs and nodes as charged particles, and simulates repulsive
forces between all pairs of nodes and attractive forces between adjacent
nodes. While this approach has proven to be scalable [49] and can yield
reasonable layouts, it may not preserve edge length in the visualization.
In contrast, the stress model by Kamada and Kawai [28] assumes
that the springs connect all pairs of nodes in the graph with an ideal
spring length, which equals to an ideal edge length, thus producing
layouts of comparatively high quality. The stress model is rooted in
multidimensional scaling [29] that can be efficiently solved with stress
majorization [22]. Although both models might produce aesthetically-
pleasing graph layouts, they cannot generate customized layouts that
reflect the semantics of the graph or the preferences of a user.

To address these issues, constrained graph layout [3] was proposed
to introduce layout constraints for node placement. Early works focus
on drawing directed graphs and constrain the layout to show the graph
hierarchy. Most approaches, e.g., [43] achieve this by computing x and
y coordinates of the objects in separate stages with different objectives.
Typically, the y-coordinate is computed by dividing the y-axis into a

shortest-path distance between them.

finite number of layers and assigning one layer to each node with a
goal of minimizing edge lengths, while the x-axis placement is adjusted
for maintaining additional aesthetic considerations, e.g., minimizing
edge crossings. The corresponding optimization problems are NP-hard,
so heuristic methods have been designed [24, 27] to solve the problem
quickly. Carmel et al. [5] design an alternative approach that associates
nodes with continuous y-coordinates that are computed by an energy
minimization. Such an axis separation strategy is algorithmically ap-
pealing but makes it hard to control the layout aesthetics. To overcome
the issue, Dwyer et al. [12] propose Dig-CoLa that computes all axes
simultaneously by integrating constraints into stress majorization.

To enhance the functionality, various constraints are introduced to
improve the force-directed placements. Ryall et al. [39] model con-
straints as springs, which are satisfied using a spring-electrical simula-
tion model with different stiffness values. Wang and Miyamoto [50]
as well as Huang and Eades [26] improve force-directed placement by
discouraging node overlapping and encouraging a compact drawing of
clusters. Recently, Simonetto et al. [40] incorporate planar constraints
into an improved force-directed algorithm to prevent edge crossing. All
these methods consider soft constraints, where weights are adjustable.
Our method takes a similar direction and models the constraints as
springs, enabling us to fuse multiple constraints with different weights.
The main difference is that we incorporate the springs into the stress
model and solve the optimization with stress majorization, which guar-
antees a monotonously converging stress function.

To impose hard constraints, He and Marriot [25] add separation con-
straints to the stress model using quadratic programming techniques.
Due to the inefficiency of the solver, however, they demonstrate their
method only with very small graphs. Dwyer et al. [13] extend stress ma-
jorization to satisfy separation constraints by modifying the quadratic
goal function in each iteration. Such quadratic programs can be solved
quickly with an iterative gradient projection algorithm. Later, Dywer et
al. [17] extend the constraint graph layout to allow a preservation of the
topology by using a new stress function that minimizes the total path
length of routed edges rather than just the straight edges. To satisfy
non-linear constraints such as circular sub-graphs, Dwyer [11] further
extend the constraints (inequalities or equalities) over either x- or y-
position variables to the ones over Euclidean space. Hence, the new
constraints can be solved by fast and scalable approaches that combine
state-of-the-art force-directed layout approaches with simple constraint
relaxation schemes. Similar to Dwyer et al. [13], our method is also
based on stress majorization, but we reformulate stress majorization
and show that the constrained graph layout can be computed by an
unconstrained stress majorization, which can be efficiently solved.

2.2 Interactive Graph Exploration

A variety of interaction techniques have been designed for large graph
exploration; see Von et al. [48] for an overview. Among them, we
focus on those for exploring topological structures. In general, most
of these techniques [19, 41, 46] provide the user with i) an overview of
the entire graph, and ii) a detailed view of a small sub-graph around a
focal node. Often the overview layout is produced by using a scalable
force-directed method, while the detailed view is simply a zoomed
version of the overview. In other words, if the sub-graph of interest is
not clearly recognizable in the overview, it may not be comprehensible
in the detailed view. To resolve this issue, Dwyer et al. [15] suggest to
use a constrained graph layout algorithm for the detailed view as well.
The structures of interest, however, might not be synchronized in both
views, especially for the clusters. Moreover, the authors demonstrate
their system only with graphs of less than a thousand nodes due to
the slow speed of the constrained layout algorithm [17]. Our efficient
unconstrained stress majorization is capable of providing a high-quality
layout in the overview as well as in the detailed view.

To prevent clutter in node-link diagrams, focus+context interac-
tion [45] is often used for graph exploration. Lamping et al. [30]
present an hyperbolic browser that visualizes large tree graphs with a
user-selected focus on details, while preserving the context of the entire
graph. By pre-computing a hierarchy of coarsened graphs, the topolog-
ical fisheye approach [23] achieves similar visualizations for general

graphs. Van Ham and Perer [47] propose a general framework for using
different degree of interest (DOI) functions and use the corresponding
metrics to direct the user to explore interesting sub-graphs within a
context. Our solution also involves focus+context visualization, where
the selected area can be shown clearly with user-specified constraints,
while the rest of the structures are kept as stable as possible. Our
method does not introduce as much distortions as fisheye views [45],
and maintains the stress constraints of the entire graph during the whole
procedure.

3 REVISITING STRESS MAJORIZATION

The main idea of our method is to reformulate the stress model in
a way that allows us to define a unified framework for solving both
constrained and unconstrained graph layout problems. To this end, we
treat each edge as a vector, we say edge vector, whose magnitude and
direction can be given as a constraint. In traditional stress models, only
edge lengths are used as constraints. Below, we first review the stress
model and stress majorization, and then present our reformulation.

Given a graph G(V,E), where V is a set of n nodes and E a set of m
edges, the stress model proposed by Kamada and Kawai [28] places
nodes in 2D space by minimizing the difference between the resulting
pairwise Euclidean distances and their corresponding target distances:

S(X) = ∑
i< j

wi j(‖ xi−x j ‖ −di j)
2 , (1)

where xi is the position of the i-th node in the 2D visualization space;
X = {x1, · · · ,xn}T is an n× 2 matrix for all the nodes; di j gives the
target distance between nodes i and j; and wi j = d−2

i j is used as a
normalization constant. By minimizing the stress function S(X), the
layout in the planar visualization minimizes the stress error. To mini-
mize Eq. (1), Gansner et al. [22] propose majorization, which offers
distinctive advantages over the original implementation [28]; most
importantly, it guarantees a monotonic decrease of the stress.

3.1 Reformulation in Vector Form
The core idea of stress majorization [22] is to use the upper bound of
Eq. (1) rather than solving it directly. By expanding Eq. (1), one can
obtain three terms:

S(X) = ∑
i< j

wi jd2
i j +∑

i< j
wi j ‖ xi−x j ‖2 −2 ∑

i< j
wi jdi j ‖ xi−x j ‖, (2)

where the first term is a constant and the second term is a quadratic
sum. By using the Cauchy-Schwarz inequality ‖ x ‖‖ y ‖≥ xT y and
dividing both sides by −‖ zi− z j ‖, one can bound the third term by:

−∑
i< j

wi jdi j ‖ xi−x j ‖ ≤ −∑
i< j

wi jdi j
(xi−x j)

T (zi− z j)

‖ zi− z j ‖
. (3)

Here, the method introduces the auxiliary variable Z = {z1, · · · ,zn}T ,
which is an n×2 matrix; the equality holds when X = Z. Based on this
inequality, the stress function is bounded by

S(x)≤∑
i< j

wi jd2
i j +∑

i< j
wi j ‖ xi−x j ‖2 −2 ∑

i< j
wi jdi j(xi−x j)

T zi− z j

‖ zi− z j ‖
.

(4)

Putting di j = di j
zi−z j
‖zi−z j‖ , we rewrite Eq. (4) as

S(x)≤∑
i< j

wi j ‖ di j ‖2 +∑
i< j

wi j ‖ xi−x j ‖2 −2 ∑
i< j

wi j(xi−x j)
T di j

=∑
i< j

wi j||xi−x j−di j||2. (5)

Compared to Eq. (1), the reformulated quadratic term in Eq. (5)
now takes a vector form, in which we minimize the sum of squared
differences between the vectors that connect pairs of nodes, whose
magnitudes are the target distances. By using the above-mentioned
edge vectors (denoted by di j), we allow the user to explicitly control
not only edge lengths but also edge directions at the same time.

Fig. 2. An illustrative example shows how we optimize a given graph G
(from (a) to (c)) by stress constraints together with user constraints (in this
example, edge orientations) defined on a constraint graph G′ (b), where
four directed edge constraints {e′0,e′1,e′2,e′3} (red arrows) are enforced
on the nodes {v0,v1,v2,v3} in (a). Note that real and virtual edges are
drawn as solid grey lines and dashed red lines, respectively, and in (a),
the lengths of real edges are all 1 and we set the target distance between
nodes as the shortest path distance between nodes in the graph, so
d34=1, d14=2, and d04=3, while w34=1, w14=1/4, and w04=1/9. (d) L′ and
J′ (defined by weights in user constraints); and (e) L and J (defined by
wi j). The orange and blue circles in (d) and (e) reveal the relationship
between L′ and J′, and L and J, respectively.

3.2 Optimization Process
Our reformulation provides an alternative interpretation of the optimiza-
tion process of stress majorization. For convenience, we rewrite Eq. (5)
in matrix form [33]:

Tr(XT LX)−2Tr(XT JD)+C, (6)

where L is the n×n weighted Laplacian matrix:

Li j =

{
−wi j i 6= j

∑k 6=i wik i = j ; (7)

D ∈ Rs×2 (with s = n(n−1)/2) is a matrix that includes all the edge
vectors between every pair of nodes in the visualization; C is a constant;
and J ∈ Rn×s is a matrix that stores the weights of all the edge vectors.
The k-th column in J corresponds to the k-th edge vector, which is
defined as

Jik =

 wi j if i is the source node of the k-th edge vector
−wi j if i is the target node of the k-th edge vector

0 otherwise.
(8)

Both, J and L are defined by the weights of the edge vectors, see the
blue circles highlighted in Figure 2(a,e) for their relationship. Note that
G(V,E) is an undirected graph, and thus we consider each edge only
once in J and L.

By differentiating Eq. (6) with respect to X and setting the derivative
to zero, we obtain:

LX = JD , (9)

which is equivalent to the linear system solved in the original stress
majorization [22] but has auxiliary variables, i.e., edge vector directions.

(a) (b) (c) (d)

Fig. 3. Illustration of the convergence of our method. We show intermediate results of a graph optimized with multiple constraints: edge directions,
cluster non-overlap, circles as well as star shapes: (a) random initialization; (b) results after 5 iterations; (c) results after 15 iterations; and (d) results
after 30 iterations.

This enables us to apply a block coordinate descent method [42] by
alternating between finding the optimal vector directions D (D-step)
and finding the node positions X (P-step):

D-step: Update D using the current configuration X; and

P-step: Fix D and compute X by solving Eq. (9).

This solving process provides a new interpretation of stress majoriza-
tion. In the P-step, X can be computed by solving the linear system in
the same way as the original stress majorization, while in the D-step, D
can be updated by using the solution of the previous step:

di j = di j
xi(t)−x j(t)
‖ xi(t)−x j(t) ‖

. (10)

This indicates that we do not impose any edge direction to any edge
where the edge length di j is already constrained. This way, we are able
to decouple distance (or length) and directional constraints.

3.3 Incorporating User Constraints

In the original formulation (cf. Eq. (1)), stress energy S(X) can be
regarded as a set of distance constraints between node pairs; we might
call them stress constraints. In contrast, our formulation with edge
vectors di j encodes both distances and directions between node pairs:
our proposition is that we can adopt the same framework to model stress
constraints as well as to allow users to directly or indirectly specify
constraints on the edge vectors to control a layout. To differentiate from
di j , which denotes the edge vectors of stress constraints, we define d′i j
to denote the target edge vectors for user-specified constraints, or user
constraints. In Section 4, we will show that various constraints can be
modeled using d′i j, and this is a unified and flexible way of modeling
various kinds of graph layout constraints.

To extend the current formulation to include user constraints with
d′i j, we form a directed (constraint) graph G′(V ′,E ′), where V ′ ⊆ V
and E ′ may contain real as well as virtual edges in G; see Figure 2(a,
b) for an example G and G′. Combining user constraints with stress
constraints, we obtain:

∑
i< j

wi j ‖ xi−x j−di j ‖2 + ∑
(i, j)∈E ′

vi j ‖ x′i−x′j−d′i j ‖2 , (11)

where vi j is the user-specified weight of target edge vector d′i j in G′.
Note that in Eq. (11), the first term considers all the real and virtual
edges in G, while the second term considers only the edges in the
constraint graph (G′). By rewriting it into the matrix form, we get

Tr(XT LX) − 2Tr(XT JD) + Tr(XT L′X) − 2Tr(XT J′D′) + C′

= Tr(XT (L+L′)X) − 2Tr(XT (JD+J′D′)) + C′ , (12)

where C′ is a constant, D′ consists of all the target edge vectors (d′i j),
and L′ and J′ are defined by the user-specified weights (vi j) and con-
structed according to Eq. (14) and Eq. (8), respectively. For the example
constraint graph G′ shown in Figure 2(b), its V ′ is a subset of nodes
of G; see Figure 2(a), and Figure 2(d) shows the corresponding L′ and
J′, where the four edges of G are constrained by the four target edge
vectors {e′0,e′1,e′2,e′3} with weights {2,2,4,4}.

Next, to minimize FZ
new(X), we differentiate Eq. (12) with respect to

X and setting the derivative to zero; thus, we obtain:

(L+L′)X = JD+J′D′ =
[

J J′
][D

D′
]
, (13)

which is still a linear system that can be solved by alternating between
D- and P-steps. Compared to Eq. (9), the P-step can be solved in the
same way, but the D-step now involves new variables D′. If a constraint
explicitly defines the direction and length of variable d′i j, such as the
separation constraint used by Dwyer et al. [13], the update of D′ is
straightforward, otherwise we should satisfy the constraint with the
least layout changes. By doing so, Eq. (13) is able to handle conflicts
between different constraints. An example is shown in Figure 1(d),
which demonstrates that our method can properly resolve conflicts
between the circle and edge direction constraints; see Section 4.

3.4 Solving the Linear System
For computing X in the P-step (Eq. (13)), Gansner et al. [22] rec-
ommend to use either a conjugate gradient (CG) solver, or Cholesky
factorization. Since we aim for interactive performance, we use the CG
solver due to its iterative nature. Once the user adds/deletes a constraint
during the interaction, we take the result from the previous iteration of
the CG solver as the input for the updated Eq. (12). This leads to a very
efficient update of the results in comparison to a costly re-factorization
of the system matrix in the case of using Cholesky factorization.

Figure 3 illustrates the fast convergence of the process by showing
intermediate results of a graph, where the result of the 15th iteration
almost satisfies all the constraints. For interactive exploration of large
graphs, however, the CPU version is still not fast enough. Therefore,
we developed a GPU implementation of our system based on the GPU-
based linear algebra library ViennaCL [38].

4 USER CONSTRAINTS ON GRAPHS

Having reformulated stress majorization, we next show how to adapt our
framework to model various kinds of constraints in a unified fashion,
including some of the constraints proposed in previous works [11–
13], e.g., edge orientations, circularity, and non-overlapping clusters.
Besides existing constraints, our framework also allows us to define
new constraints to improve the graph layout quality.

In our framework, we categorize user constraints into three classes:
direct, metrics-based, and shape-based constraints. For direct con-
straints, we directly specify target edge vectors (d′i j) for the related

edges in graph. For metrics-based constraints, the target edge vectors of
the related nodes are computed based on the applied aesthetic metrics,
while for shape-based constraints, we constrain the layout to follow
certain reference shapes. In the following, we describe each class of
constraints and explain how we update d′i j in the D-step based on the
corresponding layout configuration X, which is {x1, · · · ,xn}T .

4.1 Direct Constraints
Direct constraints explicitly specify the target edge vectors, so the
update of d′i j is straightforward. By representing the target edge vector
between nodes i and j with a unit vector ui j and length li j , we set
d′i j = li j ∗ui j. The edge length constraint, edge orientation constraint,
and temporal coherence constraint all belong to this class.

Edge Length Constraint. This is like a stress constraint that follows
the original stress majorization. After the user employs a lasso to select
edges in the graph, our method constrains the d′i j of each selected edge
to take a certain user-specified length li j like an ideal distance [11];
hence, we set these d′i j by a simple scaling: li j ∗ (xi−x j)/ ‖ xi−x j ‖.

Edge Direction Constraint. This constraint is similar to the previous
length constraint, but here we constrain the d′i j of each selected edge
to follow a certain user-specified direction ui j, i.e., we set these d′i j as
||xi−x j||ui j .

Temporal Coherence Constraint. To enable the creation of a co-
herent time-varying graph layout, we take the graph layout from the
previous time step as a reference layout and map the graph layout of
the current time step to it. Suppose the layout configuration at time
t− 1 is X(t− 1), we set the target edge vector d′i j(t) at time t to be
d′i j(t−1) for all node pairs that exist at both times. Since we also keep
the original unconstrained stress model through the stress constraints in
Eq. (13), nodes that only exist in the graph at time t can also be properly
positioned. Figure 4 illustrates temporal coherence, showing that nodes
(A, C, D, E, and F) existed in both graphs have similar structures.

Fig. 4. Enforcing temporal coherence for a dynamic graph visualization:
(a) layout at time t−1; (b) layout at time t without the temporal coherence
constraint; and (c) layout at time t after enforcing the temporal coherence
constraint. A sub-graph existed at both times (nodes A, C, D, E, & F) is
highlighted with a pink background. Nodes and edges that exist at both
times are shown in gray, elements that existed only in (a) are shown in
black, while elements that existed only in (b,c) are shown in light gray.

4.2 Metrics-based Constraints
Metrics-based constraints aim to optimize a layout to meet certain
aesthetic criteria, such as reducing cluster overlap and minimizing edge
crossings. In this class, the target edge vector to be constrained is not
directly provided but needed to be determined based on the metric.

Non-overlap Constraint. Clusters are prominent structures that al-
ways catch viewer’s attention. Hence, if multiple clusters overlap in
a graph layout, we try to separate them to improve the readability of
their structures. A method to detect overlapping clusters can be found
in [11], which refers to minimal penetration depth (mpd) for collision
detection in rigid-body simulations [10]. Since cluster boundaries are
usually convex, we estimate the vector mpd between two overlapping
clusters by finding the shortest vector to move a cluster out of the other;
see the grey arrow (mpd) in Figure 5(a) for an example.

To formulate a non-overlap constraint, we make use of the mpd to
modify d′i j . Given two overlapping clusters Ca and Cb, for each node i

in Ca and each node j in Cb, we add mpd to the associated target edge
vector between them: d′i j = (xi− x j)+mpd. Hence, the constraint
will push the nodes of the two clusters away from each other by mpd;
(Figure 5(a)). Furthermore, if we take each node as a cluster, non-
overlap for node boundaries (cf. [11]) can be considered as a special
case of this non-overlap constraint.

Fig. 5. Metrics-based constraints: (a) we push two overlapping clusters
away from each other by taking mpd into the target edge vectors between
nodes in the two clusters; and (b) the weighted average of two crossing
edge vectors

−→
i j and

−→
kl is taken as the direction component of the target

edge vectors (shown in red) to avoid the crossing.

Minimizing Edge Crossings. Excessive edge crossings prevent us
from seeing local graph structures. However, it is not always possible
to avoid all the crossings, cf. [27] and current methods can mainly deal
with crossings in small graphs. In this work, we do not aim to solve
the general edge crossing problem. Instead we show that using our
unified framework with the edge vectors, we are able to model a simple
constraint to resolve edge crossings in small graphs.

Given a small sub-graph of interest selected by lasso, we first identify
all pairs of intersecting edges inside, and then locate the node with
the largest degree (say node i) among the nodes in all the intersecting
edges. After that, we find a pair of intersecting edges that involve node
i, e.g., the edge between nodes i and j, and another between nodes k
and l (see Figure 5(b), and compute their target edge vectors by:

ρ = li j
xi−x j

‖ xi−x j ‖
+ llk

xl −xk

‖ xl −xk ‖
;

d′i j = li j
ρ

‖ ρ ‖
and d′lk = llk

ρ

‖ ρ ‖
. (14)

4.3 Shape-based Constraints
Based on our unified framework, it is possible to constrain the local
structure of a graph, since the framework enables us to constrain edge
directions in addition to edge lengths. Hence, we can formulate shape-
based constraints in our framework to optimize the local structure of a
sub-graph to follow certain reference shapes, so that the local structure
around the sub-graph can be revealed more clearly.

Unlike direct and metrics-based constraints, the nodes to be updated
are not directly provided but need to be determined based on the refer-
ence shape. Moreover, the reference shape has different forms and is
provided in a different way for different constraints in this constraint
class. Below, we first present the part of our method common to all the
shape-based constraints and then give details to individual constraint.

Given a reference shape and a set of nodes {pi}
np
i=1 belonging to a

sub-graph of interest, our goal is to re-arrange pi to follow the reference
shape. Hence, we first uniformly discretize the reference shape into
nq points, say {q j}

nq
j=1, where nq ≥ np. Second, to help preserve the

mental map of users, so that the graph layout receives the least amount
of changes, we adopt the iterative closest point (ICP) matching model,
and define an affine transformation M (with translation, rotation, and
scaling) to transform {pi}. In each ICP iteration, we determine for each
pi a point on the reference shape that is the closest to Mpi, say qi, and
then compute M that minimizes the following objective:

np

∑
i

ωi ‖ Mpi − qi ‖2 , (15)

where ωi is the weight of node pi. To emphasize the nodes that connect
with many, we set ωi as the degree of node pi, so that the major structure
is more clearly revealed. We solve this matching problem by using the
iterative closest point (ICP) algorithm [2], which is widely employed
in point set registration. Once M is computed, we determine pairs of pi

and p j whose mapped points Mpi and Mp j are adjacent to each other
in the reference shape, and set the target edge vector (d′i j) between
them as M(pi−p j) to follow the reference shape.

Circle Constraint. Circular structures are salient features in graph
layouts, particularly for cases like biological pathways and transport
networks. After the user selects a sub-graph of interest by lasso, our
method looks for the largest cycle in the sub-graph and aims to move the
nodes in the cycle to fit a circle (reference shape). Figure 6(a) shows an
illustrative example, where we achieve a stable circular layout with six
edge vector constraints. In contrast, Dwyer [11] requires a combination
of more separation constraints to create a satisfactory layout, including
also constraints between non-adjacent nodes; see Figure 6(b).

Fig. 6. Comparison the constraints to create a circular layout: (a) our
method and (b) Dwyer [11]. Our method fits a target circle to a selected
sub-graph and constrains only six target edge vectors (red arrows), while
Dwyer [11] requires more constraints, including the separation between
adjacent (grey) and non-adjacent (blue) nodes.

Fig. 7. Fit a star shape to a sub-
graph (black) by manipulating the
black edges in the sub-graph to
follow the red target edge vectors.

Star Constraint. Purchase [36]
introduced an aesthetically-
pleasing metric that spreads
out edges around a node by
maximizing the minimum angle
in-between outgoing edges from
the node. In this work, we develop
a more efficient metric, the star
constraint, which can be modeled
in our unified framework by
referencing a local substructure
to a star shape. To do so, after the
user selects a sub-graph, we find
the nodes with the largest degree
for the user to select. Then, we pick as the reference shape a star shape
whose edge count matches the degree of the user-selected node (see
Figure 7), and modifies the target edge vectors accordingly. Since
ICP matches shapes with a rotation, the star shape can have varying
orientation when mapped to the nodes with the least layout changes.

Symmetry Constraint. Symmetry maximization is another way to
enhance a graph’s readability, especially by means of reflective sym-
metry, see [36]. Taking a symmetry axis and a sub-graph of interest
(say Gs) specified by the user, we can regard the mirror image of Gs as
a reference shape and apply it to the graph’s substructure on the other
side of the symmetry axis; see Figure 8(a). After determining the corre-
spondence with ICP, each node i in Gs associates with a corresponding
node i′ in G′s, which is a mirrored sub-graph. In Gs, for each pair of
connecting nodes i and j, whose length is li j and unit vector is ui j , we
can apply li j and u′i j (which is the mirror of ui j about the symmetry
axis) to set the target edge vector between nodes i′ and j′ in G′s, i.e.,
d′i′ j′ = li j ∗u′i j. Figure 8 shows an example, where the hexagon boxed
by dashed lines is mapped to the sub-graph shown on the right hand
side according to the vertical symmetry axis in the middle.

5 RESULTS AND EVALUATION

We implemented and tested our method on a computer with an Intel
Core i7 processor with 16GB memory using C++. Moreover, we
developed a GPU implementation that runs on the NVidia GTX1080
graphics card with 8GB video memory using CUDA. The code is

Fig. 8. Symmetry Constraint. (a) User specifies a symmetry axis (red
dashed) and a sub-graph of interest (boxed); (b) we take the mirrored
sub-graph as a reference shape to symmetrize the structure on the right.

available for download on GitHub2. To demonstrate that our method is
able to produce fast and stable constrained graph layouts, we evaluated
three main aspects. First, we quantitatively compare the quality of
our results with two state-of-the-art constrained methods. Second, we
demonstrate its usefulness in different applications and qualitatively
compare it with related methods. Last, we present a constraint-based
graph exploration interface that enables users to interactively explore a
large graph of approx. 10K nodes and 90K edges.

5.1 Comparison with Previous Methods
We compare our approach with two closely related constrained graph
layout methods: an incremental procedure for layouts with separation
constraints (IPSep) [13] and a scalable and versatile constrained graph
layout (SV) [11]. Both methods are closely related to this work, since
both enforce separation constraints between selected pairs of nodes;
both of them, however, cannot explicitly constrain edge directions.
The main difference between them is that IPSep defines the separation
in horizontal/vertical axis, while SV defines the Euclidean distance
in an arbitrary direction. Namely, both methods support edge length
and direction constraints, and SV supports even more, e.g., a circle
constraint and non-overlap of convex cluster constraint, because of its
flexibility. On the other hand, SV is faster than IPSep but its quality
might be inferior to IPSep, because it incorporates constraints into the
force-directed layout algorithm [31] instead of the stress model.

Accordingly, we designed two experiments: i) we compare our
method with IPSep and SV for the downward constraint (Section 5.1.1),
and ii) we compare our method with SV for the circle constraint and
non-overlap constraint (Section 5.1.2). The first experiment involves a
direct constraint, while the second involves a metrics-based constraint
(non-overlap) and a shape-based constraint (circle). We use the code
that was provided by the authors to perform the comparison. Following
Dwyer et al. [13], we measure the layout quality using stress error (SE)
as defined in Eq. (1). Moreover, we compute the degree of constraint
satisfaction, which has different definitions for different constraints; we
will outline the exact definitions below.

5.1.1 Comparison: Direct Constraints
In this comparison, we use two datasets: Bus1138 with 1138 nodes and
US Power Grid with 4941 nodes [9]. The former dataset was used to
test downward constraints by IPSep and SV before. To measure the
constraint satisfaction degree, we define vertical edges (VE) [4] :

V (X) = ∑
(i, j)∈E

‖<
xi−x j

||xi−x j||
, [1,0]>‖ , (16)

which measures the sum of absolute inner products to be between the
edge vector and the positive X-axis. Like SE, a small V (X) indicates
that the constraints are better satisfied. Like Dwyer et al. [13], we also
count the number of edge crossings (#EC).

Results. Table 1 lists the metric values for layouts of two different
data sets generated by unconstrained layout (UC), IPSep, SV, and two
versions of our method with different weights (vi j = 2 and vi j = 4).

2https://github.com/yanyan.wang/vector_stress_majorization

https://github.com/yanyan.wang/vector_stress_majorization

(b)(a) (d)

SE = 49,035
VE = 838
#EC = 4,517

SE = 42,874
VE = 714
#EC = 2,083

SE = 40,407
VE = 878
#EC = 1,317

(c)

SE = 88,860
VE = 757
#EC = 8,054

Fig. 9. Comparison of the layout of the Bus1138 graph data with downward constraints generated by different methods: (a) unconstrained stress
majorization (UC); (b) IPSep; (c) SV; and (d) our method with weight vi j set to be 4.

Table 1. Comparing two versions of our method (with different weights,
Ours-I: vi j = 2 and Ours-II: vi j = 4) with unconstrained layout (UC), IPSep,
and SV. The comparison considers all real edges in two different graphs.

Methods
Graphs Bus1138 US Power Grid

SE VE #EC SE VE #EC
UC 40,407 878 1,317 687,963 3,907 13,462

Ours-I 42,874 714 2,083 698,140 3,457 13,599
Ours-II 46,241 560 2,484 714,519 2,786 13,071
IPSep 49,035 838 4,517 817,994 2,789 41,560

SV 88860 757 8,542 1,858,103 4,849 116,568

Table 2. Comparing our method (weight vi j = 3.5 for all specified con-
straints) with unconstrained layout (UC) and SV on two graphs.

Methods
Graphs Bcspwr10 Psse1

SE #MN ME SE #MN
UC 6.71e5 1,109 18.14 1.42e7 50,146

Ours 9.95e5 134 1.95 1.75e7 13,378
SV 1.14e11 831 14.82 1.92e10 49,679

We can see that our method produces the best quality, with stress
values close to UC. Since the downward constraint changes the edge
direction, it introduces more edge crossings for the Bus1138 graph, but
our method still produces fewer edge crossings than IPSep and SV, and
it even leads to the smallest number of edge crossings for the US Power
Grid data set. Regarding the constraint satisfaction degree VE, our
method performs the best for the Bus1138 graph, while it produces a
VE similar to IPSep for the the US Power Grid graph. The results also
confirm that SV is worse than IPSep and our method. Since the weight
vi j balances the stress constraint and user constraints, our version I with
smaller weight leads to smaller vertical energy, while our version II
with larger weight leads to smaller stress value.

Figure 9(a-d) presents the resulting layouts of the Bus1138 data set
generated by an unconstrained stress majorization (UC), IPSep, SV, and
our method (with vi j = 4), respectively. Comparing with UC shown
in Figure 9(a), we can see that our method clearly displays the major
structure with the least amount of edge crossings (see Figure 9(d)),
while SV leads to visual clutter (see Figure 9(c)). Due to space limit,
we only show the results of the Bus1138 data set; for the results of the
US Power Grid graph, please refer to the supplemental material.

5.1.2 Comparison: Metrics- and Shape-based Constraints
To study the quality of layouts generated with the non-overlap and circle
constraints, we compare our method with SV [11], since IPSep cannot
support these constraint classes. We use two large graphs: Bcspwr10
(5300 nodes) and Psse1 (14318 nodes), and generate clusters in them
using the Snap library [32]. Moreover, we use two additional metrics
to quantify the non-overlap and circle constraints: i) the number of
mis-placed nodes (#MN) and ii) the shape matching error (ME). Mis-
placed nodes refer to nodes located within the convex hull of some other
classes, while for ME, we evaluate Eq. (15) for each circle and compute
the average weighed by the circle area. For Psse1, since it does not
have circle information, we only consider non-overlap constraints.

Results. Table 2 lists the metric values for layouts of Bcspwr10 and

SE = 1.14e11
#MN = 831
ME = 14.82

(a) (b)

SE= 9.95e5
#MN = 134
ME = 1.95

Fig. 10. Comparison of the layout of Bcspwr10 with cluster non-overlap
and circle constraints generated by SV (a) and our method with vi j set to
3.5 (b).

Fig. 11. Convergence of different constrained layout methods for the
Bus1138 graph. We plot stress error vs. number of iterations. Our
method and IPSep both converge in less than ten iterations but our
method has smaller stress errors, whereas SV requires 100 iterations to
converge with still having a large stress error.

Psse1 generated by unconstrained layout (UC), SV, and our method
(with vi j = 3.5) for two graphs. Similar to the downward constraint
results, the stress values produced by our method are quite close to
those of UC, meaning that its layout is similar to that generated by
the original stress majorization, while SV produces much larger stress
errors (SE). Meanwhile, both the number of mis-placed nodes and
shape matching energy for our method are much lower than others.

Figure 10(a,b) presents the layouts of the Bcspwr10 graph data
generated by SV and our method, respectively. We can see from the
figures that our method almost separates all clusters. Furthermore, the
three sub-graphs of interest are well arranged in a circular fashion,
especially for the smallest one. In contrast, SV introduces more mis-
placed nodes (#MN) and the three sub-graphs cannot really evolve
to circular shapes. The layouts of the Psse1 graph data show similar
results, and can be found in the supplemental material.

5.1.3 Performance.

Table 3 summarizes the time taken to generate graph layouts of varying
complexity, from 1138 to 14318 nodes. For Bus1138 and US Power
Grid, all edges are enforced with the downward constraints, so the
number of constraints equals the edge count (m). In contrast, the non-
overlap constraints for Bcspwr10 and Psse1 involve many node pairs
among different clusters, so the number of constraints becomes really
large. SV is faster than our CPU implementation but slower than our

Table 3. Statistics of our results: the data set size (n and m), number of constraints (c), and computational time (in seconds) for creating the layouts
using the CPU and GPU versions of our method, IPSep [13], and SV [11]. DC: Downward Constraint; CN: Cluster Non-overlap Constraint; CC: Circle
Constraint; ED: Edge Direction Constraint; and SC: Star Constraint.

Data sets # nodes (n) # edges (m) # constraints (c) constraint type Ours(CPU) Ours(GPU) SV IPSep
Bus1138 1138 1458 1458 DC 0.83 0.51 0.43 32.49

USPowerGrid 4941 6594 6594 DC 8.43 1.79 0.53 320.07
Facebook4039 4039 88234 6947528 CN+ED+CC+SC 11.84 2.36 – –

Bcspwr10 5300 8271 6805586 CN+CC 13.60 3.93 11.89 –
Psse1 14318 57366 79297968 CN 261.2 122.753 150.77 –

1.0
0.907217

0.9557131.0

(c)(b)(a)

Fig. 12. Comparing our method with Yuan et al. [51] for merging graphs.
(a) highlighting the subgraphs shown in pink and blue regions on a graph
layout with reference shapes SG1 and SG2; (b) The result produced by
our method; and (c) the result produced by Yuan et al. [51]. The numbers
shown in (c) indicate the similarity scores between the sub-graph and its
reference shape, the structures highlighted in the orange boxes can be
more clearly revealed in (b) than in (c).

GPU implementation for large graph data.
We also compared the convergence of the stress error of the three

methods, as summarized in Figure 11. Both our method and IPSep,
converge to similar stress errors and run more rapidly than SV, while
our method produces the smallest stress error.

In summary, we see that our method runs at comparable speed
for small graphs like SV [11], but it is still able to produce higher
quality results, as shown in Table 1. For large graphs with non-overlap
constraints, the cost of transferring L′ and J′ is too expensive, so
that the GPU performance is not as good as we expected; however,
it still improves over the CPU version and runs faster than SV, since
SV requires a larger amount of constraints than our method. For the
graph Psse1, SV and our method run out of system memory. On the
other hand, during the interactive exploration, only the newly added
constraints needed to be updated for L′ and J′, so the performance
becomes acceptable for graph exploration.

5.2 Comparison with Applications

Here we show that our direct constraints can be used for merging small
graph layouts and incremental layouts for dynamic graph visualization,
since target edge vectors of specific edges have been explicitly given, so
we can directly treat them as constraints in our framework. Moreover,
for each application we compare to previous related works.
Merging Subgraphs. Yuan et al. [51] propose to combine many
user’s input sub-graphs into a consistent layout that maintains the
topological information of the individual input layouts. They developed
an algorithm, Laplacian constrained distance embedding, that attempts
to preserve the Euclidean distance between the nodes of the input sub-
graph layouts and the nodes of an initial layout of the whole graph.
Since the nodes correspondence between the input sub-graph and the
whole graph is already known, the edge of the input sub-graph layout
can be taken to form the target edge vectors of the associated nodes,
and thus our method can also be used for this purpose.

As shown in Fig 12(a), the user requires the subgraph shown in the
blue region to be aligned with a straight line SG1, and the subgraph in
the pink region to be matched up with the reference shape SG2. Our

Fig. 13. The user interface of our constraint-based graph exploration
system includes a button menu for constraints selection (top-right, boxed
in purple), the overview of the entire graph (boxed in yellow), detail view
(boxed in red), constraints weight controlling view (boxed in green), and
detail information view (boxed in blue).

method automatically creates the constrained graph layout shown in
Figure 12(b), where we measure the layout similarity in terms of the
procrustes statistic [7]. Such measure is 1.0 between the sub-graphs
in our case, while those generated by Yuan et al. [51] are 0.95 and
0.91. Moreover, we can see that the sub-structures highlighted by the
orange boxes can be shown more clearly with fewer edge crossings and
node overlapping. We assume the reason is that their method preserves
the Euclidean distance between nodes of a given unconstrained graph
layout rather than the graph distance, while our method consistently
combines the stress (distance) constraints and user constraints together.
Visualizing Dynamic Graphs. Our temporal coherence constraint
naturally supports time-varying visualizations of dynamic graphs. To
demonstrate the effectiveness of our method, we first compare it with
the Laplacian-based dynamic graph layout algorithm [6], which has
been demonstrated to perform better than the online dynamic graph
drawing algorithm [20]. Figure 14 shows the results, where our layout
is more stable for the Newcomb’s fraternity data [35], For example, the
shape of the green and pink sub-graphs in our method (a) are almost
kept constant throughout the whole sequence. Using the state-of-the-art
approach (b), these areas re-shape substantially at T1 and T3. We
further apply our method to large dynamic graphs, the results of which
can be found in the supplemental material.

5.3 Constraint-based Graph Exploration

In this section, we demonstrate the usefulness of our method in explor-
ing large graphs. Figure 13 shows a screenshot of our interface, which
consists of five main components: constraint selection view (upper-
left), main view (left), detail view (upper-right), weight controlling
view (middle-right), and finally a detailed information view providing
additional information about sub-graph of interest. Once the user se-
lects a constraint type, the associated constraints will be imposed to the
entire graph or to the subgraph of interest selected by a lasso, while the
sub-graph of interest can be highlighted in the detail view. The user
can also assign different weights to individual constraints.

Using this setup, users can interactively enforce constraints to ex-
plore clusters, paths, circles, and nodes. The clusters can be separated

1

2

3

4

5

6

7

8

9
10

11

12

13

14

15

16

17

T4 T5

1

2

3

4

5

6

7

8

9 10

11

12

13

14

15

16

17

1

2

3

4

5

6

7

8

9
10

11

12

13

14

15

16

17

1

2

3

4
5

6

7

8

9
10

11

12

13

14

15

16

17

1

2

3

4
5

6

7

8

9
10

11

12

13

14

15

16

17

1

2

3

4

5

6

7

8

9
10

11

12

13

14

15

16

17

T0 T1 T3T2 (b)

(a)

Fig. 14. Comparison of the layout results generated by (a) our method and (b) the Laplacian-based dynamic graph layouting algorithm [6]. The
sub-graphs shown in pink and green regions keep the shape during the whole sequence in (a), but change substantially in (b). Node 4 is highlighted
with a red circle, revealing that its position is kept stable in our method but changes in the other method.

Fig. 15. Exploration of circles in the Ego-network. (a) results generated by using cluster non-overlap constraints, where 16 communities are
separated; (b) results generated by enforcing circle and star shapes to two selected nodes: 686 and 3980, the highlighted sub-graphs are shown in
the detail views. (c) results generated by enforcing path constraints to these two nodes, the detailed node label information is shown in the detail view.

using the non-overlap constraint, while circles and nodes can be high-
lighted by enforcing circular and star-like shapes. To help the users to
intuitively perceive a path, we introduce a path constraint that orients
edges using the weighted average of all edge vectors along a path. This
allows us to straighten the path while imposing only small changes to
the whole graph layout.

Exploration of Ego-Network. Here, we use the data set ego-
Facebook [32] to demonstrate the effectiveness of our method for graph
exploration. This graph has 4039 nodes, 88234 edges, and 4037 differ-
ent, hand-labeled circles, which represent a categorization of Facebook
friends. Since each circle is not only densely-connected but also might
be nested in large ones, it is very hard to see their structures.

To quickly get an overview of this ego-network, we suggest that
the user explores the relationship between different communities by
enforcing cluster non-overlap constraints. Figure 15(a) shows the result,
where 16 communities are separated, and different communities have
different structures. To compare the different communities, the user
selects the central nodes (pink and orange) and applies circle and star
shape constraints to them. Next, the user obtains the results shown in
Figure 15(b), where the pink node is involved in two nested circles,
while the orange node has very dense connections. It appears that
these two nodes have very different structures. To investigate how far
they are from each other, we enforce a path constraint to them, the
corresponding path is shown in Figure 15(c). We see that there are five
nodes with different labels between them. The user can further explore
the nodes on this path, for instance, to understand the structure of the
other communities.

6 CONCLUSIONS AND FUTURE WORK

In this work, we revisit stress majorization and reformulate it in terms
of a vector form. By this means, we develop a unified framework

that enables us to model various forms of constraints: direct con-
straints, metric-based constraints, and shape-based constraints. These
constraints can all be solved efficiently by a GPU-accelerated stress
majorization method. Through a set of quantitative comparisons with
state-of-the-art constrained layout methods, we show that our approach
outperforms others in producing graph layouts with lower stress while
satisfying the constraints. Meanwhile, we demonstrated the usefulness
of our method with the applications of merging user’s input sub-graph
layout and temporal coherent dynamic graph visualization. Finally, we
developed a system for interactive exploration of large graphs using
overview+detail with constraint based layouts, and demonstrated its
effectiveness by using a large social network data.

Our formulation of stress majorization opens various new opportu-
nities for graph visualization. First, we may develop more constraints,
especially shape-based constraints, where the user can fit a specific
shape to a given graph layout for aesthetics and data analysis. Sec-
ond, the weights of the constraints are currently manually set by users,
so finding a way to automatically set proper weights to fuse multiple
constraints is part of our future work. Third, our current GPU imple-
mentation is still not sufficiently fast to support interactive exploration
of very large graphs. In the future, we plan to further improve its
performance by optimizing the data transfer between CPU and GPU.
Last, we plan to explore different applications of our improved stress
majorization, such as constrained multidimensional scaling (MDS) for
high-dimensional data visualization [7].

ACKNOWLEDGMENTS

The authors would like to thank Zeyu Wang and Tong Ge for their help
in making the video, and the anonymous reviewers for the valuable
comments. This work is supported by the grants of NSFC-Guangdong
Joint Fund (U1501255), NSFC (61379091), the National Key Research
& Development Plan of China (2016YFB1001404), National Foreign

1000 Talent Plan (WQ201344000169), Leading Talents of Guangdong
Program (00201509), Shandong Provincial Natural Science Foundation
(11150005201602) and the Fundamental Research Funds of Shandong
University.

REFERENCES

[1] D. Archambault, H. Purchase, and B. Pinaud. Animation, small multiples,
and the effect of mental map preservation in dynamic graphs. IEEE Trans.
Vis. & Comp. Graphics, 17(4):539–552, 2011.

[2] P. Besl and N. Mckay. A method for registration of 3-D shapes. IEEE
Trans. Pat. Ana. & Mach. Int., 14(2):239–256, 1992.

[3] K.-F. Böhringer and F. N. Paulisch. Using constraints to achieve stability
in automatic graph layout algorithms. In ACM CHI, pages 43–51, 1990.

[4] S. Bridgeman and R. Tamassia. Difference metrics for interactive orthog-
onal graph drawing algorithms. In International Symposium on Graph
Drawing, pages 57–71, 1998.

[5] L. Carmel, D. Harel, and Y. Koren. Combining hierarchy and energy for
drawing directed graphs. IEEE Trans. Vis. & Comp. Graphics, 10(1):46–
57, 2004.

[6] L. Che, J. Liang, X. Yuan, J. Shen, J. Xu, and Y. Li. Laplacian-based
dynamic graph visualization. In Proceedings of the IEEE Pacific Visual-
ization Symposium, volume 00, pages 69–73, 2015.

[7] T. F. Cox and M. A. Cox. Multidimensional scaling. CRC press, 2000.
[8] T. Crnovrsanin, J. Chu, and K.-L. Ma. An incremental layout method for

visualizing online dynamic graphs. In International Symposium on Graph
Drawing and Network Visualization, pages 16–29, 2015.

[9] T. A. Davis and Y. Hu. The University of Florida sparse matrix collection.
ACM Transactions on Mathematical Software, 38(1):1, 2011.

[10] D. Dobkin, J. Hershberger, D. Kirkpatrick, and S. Suri. Computing the
intersection-depth of polyhedra. Algorithmica, 9(6):518–533, 1993.

[11] T. Dwyer. Scalable, versatile and simple constrained graph layout. Com-
puter Graphics Forum, 28(3):991–998, 2009.

[12] T. Dwyer and Y. Koren. Dig-CoLa: directed graph layout through con-
strained energy minimization. In Proceedings of the IEEE Information
Visualization Symposium, pages 65–72, 2005.

[13] T. Dwyer, Y. Koren, and K. Marriott. IPSep-CoLa: An incremental
procedure for separation constraint layout of graphs. IEEE Trans. Vis. &
Comp. Graphics, 12(5):821–828, 2006.

[14] T. Dwyer, B. Lee, D. Fisher, K. I. Quinn, P. Isenberg, G. Robertson, and
C. North. A comparison of user-generated and automatic graph layouts.
IEEE Trans. Vis. & Comp. Graphics, 15(6):961–968, 2009.

[15] T. Dwyer, K. Marriott, F. Schreiber, P. Stuckey, M. Woodward, and
M. Wybrow. Exploration of networks using overview+detail with
constraint-based cooperative layout. IEEE Trans. Vis. & Comp. Graphics,
14(6):1293–1300, 2008.

[16] T. Dwyer, K. Marriott, and M. Wybrow. Dunnart: A constraint-based
network diagram authoring tool. In International Symposium on Graph
Drawing, pages 420–431, 2008.

[17] T. Dwyer, K. Marriott, and M. Wybrow. Topology preserving constrained
graph layout. In International Symposium on Graph Drawing, pages
230–241, 2008.

[18] P. Eades. A heuristic for graph drawing. Congressus numerantium, 42:146–
160, 1984.

[19] P. Eades, R. F. Cohen, and M. L. Huang. Online animated graph drawing
for web navigation. In International Symposium on Graph Drawing, pages
330–335, 1997.

[20] Y. Frishman and A. Tal. Online dynamic graph drawing. IEEE Trans. Vis.
& Comp. Graphics, 14(4):727–740, 2008.

[21] T. M. Fruchterman and E. M. Reingold. Graph drawing by force-directed
placement. Software: Practice and experience, 21(11):1129–1164, 1991.

[22] E. R. Gansner, Y. Koren, and S. North. Graph drawing by stress majoriza-
tion. In International Symposium on Graph Drawing, pages 239–250,
2004.

[23] E. R. Gansner, Y. Koren, and S. C. North. Topological fisheye views for
visualizing large graphs. IEEE Trans. Vis. & Comp. Graphics, 11(4):457–
468, 2005.

[24] E. R. Gansner, E. Koutsofios, S. C. North, and K.-P. Vo. A technique for
drawing directed graphs. IEEE Trans. on Software Engineering, 19(3):214–
230, 1993.

[25] W. He and K. Marriott. Constrained graph layout. In International
Symposium on Graph Drawing, pages 217–232, 1996.

[26] M. L. Huang and P. Eades. A fully animated interactive system for
clustering and navigating huge graphs. In International Symposium on
Graph Drawing, pages 374–383, 1998.

[27] M. Jünger and P. Mutzel. Exact and heuristic algorithms for 2-layer
straightline crossing minimization. In International Symposium on Graph
Drawing, pages 337–348, 1995.

[28] T. Kamada and S. Kawai. An algorithm for drawing general undirected
graphs. Information processing letters, 31(1):7–15, 1989.

[29] J. B. Kruskal. Multidimensional scaling by optimizing goodness of fit to a
nonmetric hypothesis. Psychometrika, 29(1):1–27, 1964.

[30] J. Lamping, R. Rao, and P. Pirolli. A focus+context technique based on
hyperbolic geometry for visualizing large hierarchies. In ACM CHI, pages
401–408, 1995.

[31] U. Lauther. Multipole-based force approximation revisited – a simple but
fast implementation using a dynamized enclosing-circle-enhanced kd-tree.
In International Symposium on Graph Drawing, pages 20–29, 2006.

[32] J. Leskovec and R. Sosič. Snap: A general-purpose network analysis and
graph-mining library. ACM Trans. on Intelligent Systems and Technology,
8(1):1, 2016.

[33] C. D. Meyer. Matrix analysis and applied linear algebra, volume 2. Siam,
2000.

[34] K. Misue, P. Eades, W. Lai, and K. Sugiyama. Layout adjustment and the
mental map. Journal of Visual Languages & Computing, 6(2):183–210,
1995.

[35] T. M. Newcomb. The acquaintance process: Looking mainly backward.
Journal of Personality and Social Psychology, 36(10):1075, 1978.

[36] H. C. Purchase. Metrics for graph drawing aesthetics. Journal of Visual
Languages & Computing, 13(5):501–516, 2002.

[37] H. C. Purchase, C. Pilcher, and B. Plimmer. Graph drawing aesthetics
created by users, not algorithms. IEEE Trans. Vis. & Comp. Graphics,
18(1):81–92, 2012.

[38] K. Rupp, F. Rudolf, and J. Weinbub. ViennaCL - a high level linear algebra
library for GPUs and multi-core CPUs. In Intl. Workshop on GPUs and
Scientific Applications, pages 51–56, 2010.

[39] K. Ryall, J. Marks, and S. Shieber. An interactive constraint-based system
for drawing graphs. In Proceedings of the 10th annual ACM symposium
on User interface software and technology, pages 97–104, 1997.

[40] P. Simonetto, D. Archambault, D. Auber, and R. Bourqui. ImPrEd: An
improved force-directed algorithm that prevents nodes from crossing edges.
Computer Graphics Forum, 30(3):1071–1080, 2011.

[41] M. E. Smoot, K. Ono, J. Ruscheinski, P.-L. Wang, and T. Ideker. Cy-
toscape 2.8: new features for data integration and network visualization.
Bioinformatics, 27(3):431–432, 2011.

[42] O. Sorkine and M. Alexa. As-rigid-as-possible surface modeling. In Symp.
on Geom. Proc., volume 4, 2007.

[43] K. Sugiyama, S. Tagawa, and M. Toda. Methods for visual understanding
of hierarchical system structures. IEEE Trans. on Systems, Man, and
Cybernetics, 11(2):109–125, 1981.

[44] R. Tamassia. Handbook of graph drawing and visualization. CRC press,
2013.

[45] C. Tominski, J. Abello, F. Van Ham, and H. Schumann. Fisheye tree
views and lenses for graph visualization. In International Conference on
Information Visualization, pages 17–24, 2006.

[46] Touchgraph Navigator. TouchGraph, LLC, 2009. www.touchgraph.com.
[47] F. Van Ham and A. Perer. Search, show context, expand on demand:

supporting large graph exploration with degree-of-interest. IEEE Trans.
Vis. & Comp. Graphics, 15(6), 2009.

[48] T. Von Landesberger, A. Kuijper, T. Schreck, J. Kohlhammer, J. J. van
Wijk, J.-D. Fekete, and D. W. Fellner. Visual analysis of large graphs:
state-of-the-art and future research challenges. Computer Graphics Forum,
30(6):1719–1749, 2011.

[49] C. Walshaw. A multilevel algorithm for force-directed graph-drawing.
Journal of Graph Algorithms and Applications, 7(3):253–285, 2006.

[50] X. Wang and I. Miyamoto. Generating customized layouts. In Interna-
tional Symposium on Graph Drawing, pages 504–515, 1995.

[51] X. Yuan, L. Che, Y. Hu, and X. Zhang. Intelligent graph layout using many
users’ input. IEEE Trans. Vis. & Comp. Graphics, 18(12):2699–2708,
2012.

www.touchgraph.com

	Introduction
	Related Work
	Constrained Graph Layout
	Interactive Graph Exploration

	Revisiting Stress Majorization
	Reformulation in Vector Form
	Optimization Process
	Incorporating User Constraints
	Solving the Linear System

	User Constraints on Graphs
	Direct Constraints
	Metrics-based Constraints
	Shape-based Constraints

	Results and Evaluation
	Comparison with Previous Methods
	Comparison: Direct Constraints
	Comparison: Metrics- and Shape-based Constraints
	Performance.

	Comparison with Applications
	Constraint-based Graph Exploration

	Conclusions and Future Work

