
Machine Learning Assisted Rendering Techniques

Yinqi (Bill) Sun
New York University

ys3540@nyu.edu

Honor Pledge:
"I affirm that I will not give or receive any unauthorized help on this academic activity and that all the work I submitted is my
own."
Machine learning homework for week 7. Signature: Yinqi Sun Date: Mar.29 2021

1. INTRODUCTION
Vision has been one of the most important ways that human uses to perceive the world because of the high expressiveness of
an image and the information density it conveys. For example, a picture can represent highly complicated concepts through
different colors, shapes, and positions; and people can perceive all of these with just a blink of an eye.

For computer systems to generate an image, it often goes through the rendering process, which I will briefly address in
Chapter 2. However, rendering can be a demanding process, which requires a precisely defined model we called scene and the
whole rendering process can be computationally expensive.

To solve these problems, in Chapter 3, I will review the method Generative Query Network (GQN) [1] which uses unsu-
pervised deep neural networks that given only images observed from several viewpoints of an unknown scene can generate an
observation of that scene from a viewpoint it has not seen before and without going through traditional rendering pipelines.
Then in Chapter 4 I’ll review some improvements [2,3,4] over GQN that strengthened its capabilities in specific applications.

2. RENDERING

Figure 1. Realtime interactive raytracing on an extremely simple scene. [5]

Rendering typically starts from a scene that describes
the properties of the things we may need to show,
including colors, shapes, positions, and other phys-
ical properties. Then, the scene, along with addi-
tional parameters specifying how the scene is ob-
served, i.e., the position of our eyes (viewpoint), is
fed into the rendering pipeline, where the geometries
of the scene will first be transformed, projected, and
clipped into a 2D frame, then, every visible surface
is divided into fragments and assigned to the cor-
responding pixel of the output image. Finally, the
color of a pixel is determined by the color of the ob-
ject it corresponds to and the properties of the light
sources in the environment.

As an important role in human-computer interac-
tion (HCI), rendering has seen huge advancement
in quality during the last decade. With more power-
ful hardware, we can now render much more com-
plicated scenes with over a million triangles and use
more realistic rendering techniques like ray tracing.
However, the obstacles ahead are also obvious; first
of all, we may not be able to get the model every
time due to real-world restrictions. For example,
if we are constructing a scene from hand drawings
or street camera images. Then, rendering may not
be a cheap process, even with modern hardware,
high fidelity rendering, i.e., ray tracing, at interac-
tive speed is no easy task. Because we need to reflect the user’s action onto the image quick enough so that the user will not
feel the delay, the whole rendering pipeline typically completes within 40ms. Figure 1 shows one of my homework that does
raytracing at interactive speed via WebGL because the objects are not triangulated; there are only 6 objects instead of thousands
of triangles in the scene. However, we can not easily render complex shapes without triangulation.

1



3. GENERATIVE QUERY NETWORK
People gave many answers to those two obstacles above. For example, there’re works focusing on inference of the 3D scene
from 2D images by training a neural network that constructs the depth map and contour from the images and synthesizes a 3D
point cloud from them [6]. Another recent work [7] uses GAN to synthesize 3D point-cloud from 2D images. However, these
representations are discrete and only sparsely sampling the underlying smooth surfaces [8], and the image rendered from the
point cloud or voxels can be vastly different from the observations because of different rendering technique/parameter may be
used.

Imagine when we first see a scene from an angle; it is natural for us to visualize how it would look like from other an-
gles. This is probably because when seeing the scene, we get an ‘idea’ of how the scene is configured. Along with some a-priori
knowledge about the world, i.e., how does the object typically looked like, we can generate an ‘imagination’ of the scene from
an unseen angle. This is similar to how Generative Query Network (GQN) [1] works which makes it another interesting answer
to the above questions. Figure 2. below shows how it works. The 4 observations on the top are observed from the scene at
viewpoints shown as gray cameras on the map. The yellow camera represents the unseen query viewpoint and the image labeled
‘neural rendering’ is the estimated image from that viewpoint generated by GQN compared to the ground truth image on the left.

Figure 2. GQN Renders the scene based on observations from different viewpoints.

As shown in figure 3. below, GQN consists of a representation network f and a generative network g. The representation network
gets different 2D observations of the 3D scene as input and will extract a representation vector r that encodes the information
about the scene itself, including the colors, shapes and positions. The generative network will take the scene representation r and
a query viewpoint vq that we need it to render the scene from and output the predicted observation of the scene at vq as image x.

Figure 3. Schematic illustration of the Generative Query Network.

2



3.1 Representation Network
The Representation Network used by GQN is typically a convolutional network. It takes the viewpoint v and x the image
observed from v as input and will output a viewpoint independent feature vector r. The image x is represented by a matrix of
dimension width × height × channels. In figure 4. we have an 64 × 64 image with 3 channels for RGB color. The viewpoint
v = (wx, wy, wz, cos(y), sin(y), cos(p), sin(p)) is a 1 × 1 × 7 vector defined by 5 parameters, the camera position coordinate
w=(wx, wy, wz), camera rotation angle on y-axis (yaw) y and camera rotation on x-axis (pitch) p. For each input observation
oi = (xi, vi), the convolution network ψ(xi, vi) will output the extracted scene representation from that image ri. Because all
the vectors ri are representing a same scene, we simply sum them up to aggregate features extracted from all the observations.

One possible architecture of the convolutional network ψ(x, v) is shown on Figure 4. below. Where k and s in the fig-
ure are the kernel size and stride size respectively. Black arrows represent convolutional layers followed by ReLUs and red arrows
marked with ‘+’ indicate residual connections.

Figure 4. Representation network.

The mathematical definition of the representation network f is shown below:

vi = (wi, cos(yi), sin(yi), cos(pi), sin(pi)) (1)

f(x1,...,n, v1,...,n) =

n∑
i=1

ψ(xi, vi) (2)

3.2 Generative Network
(See Ch. 1.4 from the Supplementary Material of this paper for original descriptions.)

Basically, what we are left to do is to generate the image from the scene representation r, the query viewpoint vq and
maybe some information θ that are learned from training with queries and its ground truth from different scene. We can fit
this process with conditional latent variable models where the resulting image x can be drawn from the distribution density
function gθ(x|vq, r). If we introduce latent variables z, which correspond to features that are not learned from the training set
but associated with input (in this case, r, vq), we would have,

gθ(x|vq, r) =

∫
gθ(x|vq, r,z)πθ(z|vq, r)dz (3)

where πθ here is the conditional prior probability indicating the probability density of latent variable z when vq, r happens. θ
here is parameters that can be learned by training.

This idea is very similar to another paper [9] from DeepMind. We first divide the latent variables z into L groups, and
by constructing the density function πθ(z|vq, r) sequentially, we can calculate it as an autoregressive density:

πθ(z|vq, r) =
L∏

l=1

πθl(zl|vq, r,z<l) (4)

As shown in Figure 5. A, for each step, we used a size-preserving convolutional LSTM network Cθ to extract salient information
from the input vq, r and latent vector zl as hidden state hg

l where zl is approximated from previous iteration l. hg
l is used to

parameterize the distribution of the next latent variable zl+1 ∼ πθl(·|v
q, r,z<l+1) as well as finally generating the distribution

3

https://science.sciencemag.org/content/suppl/2018/06/13/360.6394.1204.DC1
https://deepgenerativemodels.github.io/notes/autoregressive/


of x. To estimate πθ from hg
l , a convolutional network ηπθ is used to parameterize (generate the mean and variance of)

a Gaussian distribution that approximates πθ from hg
l . Because the output hg

l from each layer is somehow correlated to
gθ(·|vq, r,zl)πθ(zl|vq, r,z<l)zl, we cumulated the transposed convolution of each hg

l as uL. And because the rhs of (3) has

the discrete form of
L∑

l=1

gθ(x|vq, r,zl)πθ(zl|vq, r,z<l)zl ≈ uL we can use another convolutional network ηgθ to map uL to the

mean value µ of gθ(x|vq, r). Using another Gaussian distribution with mean µ and variance µt is the pixel variance we can draw
an output image x. The left of Figure 5. clipped from the supplementary material contains symbolic definition of the process
described above.

The reason we choose LSTM network to extract hl is because its proven track record for handling long-range dependen-
cies in real sequential data [9] but in theory it can be any other RNN.

Figure 5. Generative network and the interior of a LSTM Cell (B).

3.3 Training Process of Generation Network
Before we can use the generative network g, we’d better train it with observations, queries and ground truth from each query.
The intuition is that we want a θ that maximizes all the probabilities of generating the ground truth when given the observations
oi, which is encoded into scene representation ri, and query viewpoint vq that is gθ(xi|vp

i , ri). And in order to focus more on
data points that we’re not doing so well, that is the probability giθ is close to 0, instead of maximizing the sum of giθ, we minimize
L(θ) = −

∑
ln gθ(xi|vp

i , ri). L(θ) here is called the negative log-likelihood. This optimization isn’t easy to solve directly because
according to eq, (3) it require integral over the high-dimensional latent variables z. Therefore, we minimize a lower-bound F
(evidence lower bound, ELBO) of L(θ) defined by:

F(θ, ϕ) =
∑
i

∫
qϕ(zi|xi, yi)ln

qϕ(zi|xi, yi)
gθ(xi|zi, yi)πθ(zi|yi)

dzi = −L(θ) +
∑
i

KL[qϕ(·|xi, yi)||pθ(·|xi, yi)] ≥ −L(θ) (5)

where yi = {vpi , ri}. qϕ(z|x, y) is the approximated (variational) posterior density and pθ is the exact posterior. In the training
process, we use the same way to parameterize qϕ(z|xq, vq, r) as we did with the prior distribution of πθ in the generator. (See
Ch. 1.5 of the Supplementary Material). The real posterior of zl is given by the distribution we used to draw zl in the generator
which is the prior πθl . And the likelihood L(θ) here is acquired by the probability of drawing the ground truth xq from the
distribution of x output by the generator (see Ch. 3.2), which is a Gaussian distribution parameterized by uL and σt. The ELBO
−F(θ, ϕ) is then calculated as shown in eq. (5) by adding the log-likelihood L(θ) = ln(N (xq|µ = ηgθ (uL, σ = σt))) the sum of
negative KL distances of qϕl(·, x

q, vq, r, z<l) and πθ(·, vq, r, z<l) for each latent variable zl. This process is shown in Algorithm S2
in Figure 5.

4



The above ELBO is then backpropergated using the re-parameterization trick [10] to get the gradient of ELBO with re-
spect to parameters θ and ϕ. The gradients ∇θELBO,∇ϕELBO along with a learning rate µt are then used to update θ and
ϕ using Adam’s algorithm (an adaptive gradient descent method). This training process is repeated for Smax iterations where
in each iteration, a mini-batch of B scene each with M observations and a query is drawn from the dataset. The learning rate is
annealed so that it learns quickly at first and stabilizes overtime. This process is described in Algorithm S1 in Figure 5.

Figure 5. Algorithm description of GQN.

Note that on line 17 they missed a parameter zl for the generator as suggested in eq. (S23).

4. IMPROVEMENTS AND FUTURE WORKS
4.1 Results and analysis

You can find more results and detailed experiment settings from this video and the Supplementary Material. Overall, we can
see that with proper training, GQN is able to predict the unseen perspective of a fairly complex scene. However, some results
shows that the paper’s implementation of GQN would have poor performance with insufficient observations (context image),
high noises or overcomplicated scene.

5

https://science.sciencemag.org/highwire/filestream/711507/field_highwire_adjunct_files/1/aar6170s1.mp4


4.2 Improvements
For more complicated scene, [4] proposed an enhancement using epipolar geometry to model relationships between pixels across
input observations even if they are spatially distant. The representation network f would now extract the scene representation r
along with an epipolar representation e. In the generator network, e is used to calculate an attention score al that represents the
weighted contribution to each spatial position of all the geometrically relevant features in the scene representation r.

Another potential problem with GQN is that the representation network does not scale well with the number of context images
(input observations) provided. Because a simple aggregation function is used in 3.1. To improve the quality of the scene
representation [2] proposed using reinforced learning techniques to select context images that will best describe the scene hence
improving the quality of the representation vector r.

6



4.3 Applications and Outlook
The nature of GQN as another method that constructs 3D scene awareness from 2D images makes it naturally suitable for
generating 3D models in cases where 3D capturing devices are not available. For example in street view construction, robot arm
manipulation and automatic driving.

Another application of GQN could be in the art industry. 3D modeling can be hard work, it’s quite difficult for 2D artists
to work on 3D modeling. This paper [11] proposed that we can generate 3D models from 2D sketches using GQN, however the
2D drawings produced by artists do not exactly obey the physics law. One reason is that it’s hard for human to be precise about
physics when drawing with their hands. More importantly, artists often intentionally distort the physics law to emphasize specific
features of the drawing or make the drawing aesthetically pleasing at different angles. [12]. These distortions can be subtle and
natural to human perception that is either indistinguishable or is something that audiences can easily get used to. However,
these discrepancies from the physics law will make accurately defining the scene difficult. With neural representations, we can
skip the rigorous scene representation and traditional physics-based rendering techniques and generate 2D images directly from
other drawings. This may even allow it to replicate specific art styles by extracting these laws that the artists keep in mind.

Finally, video-based prediction and interpolation is an important application of GQN. But sometimes the images gener-
ated by EQN can be a bit inconsistent making the resulting video looked ‘jumpy’. This paper [3] resolved the issue by improving
the consistency of EQN. With this in mind, we can think of another potential application in rendering with expensive rendering
techniques, such as ray tracing. Some companies uses deep learning based upsampling techniques like DLSS from NVidia. With
neural rendering, we can generate frames directly using the previous rendering results from the expensive rendering pipeline as
context images and reducing the amount of frames we have to generate every second, which is similar to an interpolation that
increases the rendering speed from a different direction.

Overall, I think EQN provided a brand new set of techniques that covers the entire rendering process from modeling to
image generation and may have huge potentials to compensate for the disadvantages in traditional rendering techniques.

7



5. REFERENCES

[1] S. M. A. Eslami, D. Jimenez Rezende, F. Besse, F. Viola, A. S. Morcos, M. Garnelo, A. Ruderman, A. A. Rusu, I. Danihelka,
K. Gregor, D. P. Reichert, L. Buesing, T. Weber, O. Vinyals, D. Rosenbaum, N. Rabinowitz, H. King, C. Hillier, M. Botvinick,
D. Wierstra, K. Kavukcuoglu, and D. Hassabis, “Neural scene representation and rendering,” SCIENCE, vol. 360, no. 6394,
pp. 1204–1210, 2018.

[2] K. Chiang, “Using reinforcement learning to learn input viewpoints for scene representation,” Master’s thesis, EECS
Department, University of California, Berkeley, May 2019.

[3] A. Kumar, S. M. A. Eslami, D. J. Rezende, M. Garnelo, F. Viola, E. Lockhart, and M. Shanahan, “Consistent generative query
networks,” CoRR, vol. abs/1807.02033, 2018.

[4] J. Tobin, W. Zaremba, and P. Abbeel, “Geometry-aware neural rendering,” NeurIPS, vol. 32, 2019.
[5] “Computer graphics homework 4,” 2021. https://billsun.dev/graphics/hw4.
[6] A. A. Soltani, H. Huang, J. Wu, T. D. Kulkarni, and J. B. Tenenbaum, “Synthesizing 3d shapes via modeling multi-view

depth maps and silhouettes with deep generative networks,” in 2017 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 2511–2519, 2017.

[7] S. Lunz, Y. Li, A. Fitzgibbon, and N. Kushman, “Inverse graphics gan: Learning to generate 3d shapes from unstructured 2d
data,” 2020.

[8] V. Sitzmann, M. Zollhoefer, and G. Wetzstein, “Scene representation networks: Continuous 3d-structure-aware neural
scene representations,” in Advances in Neural Information Processing Systems (H. Wallach, H. Larochelle, A. Beygelzimer,
F. d'Alché-Buc, E. Fox, and R. Garnett, eds.), vol. 32, Curran Associates, Inc., 2019.

[9] K. Gregor, I. Danihelka, A. Graves, D. Rezende, and D. Wierstra, “Draw: A recurrent neural network for image generation,”
in Proceedings of the 32nd International Conference on Machine Learning (F. Bach and D. Blei, eds.), vol. 37 of Proceedings of
Machine Learning Research, (Lille, France), pp. 1462–1471, PMLR, 07–09 Jul 2015.

[10] D. J. Rezende, S. Mohamed, and D. Wierstra, “Stochastic backpropagation and approximate inference in deep generative
models,” in Proceedings of the 31st International Conference on Machine Learning (E. P. Xing and T. Jebara, eds.), vol. 32 of
Proceedings of Machine Learning Research, (Bejing, China), pp. 1278–1286, PMLR, 22–24 Jun 2014.

[11] M. N. Ramström, “Sketch to 3d model using generative query networks,” 2019.
[12] E. Sugisaki, Y. Kazama, S. Morishima, N. Tanaka, and A. Sato, “Anime hair motion design from animation database,” in

Proceedings of the 2006 International Conference on Game Research and Development, CyberGames ’06, (Murdoch, AUS),
p. 33–40, Murdoch University, 2006.

8

https://billsun.dev/graphics/hw4

	Introduction
	Rendering
	Generative Query Network
	Representation Network
	Generative Network
	Training Process of Generation Network

	Improvements and Future Works
	Results and analysis
	Improvements
	Applications and Outlook

	References

